Properties

Label 2-302016-1.1-c1-0-156
Degree $2$
Conductor $302016$
Sign $-1$
Analytic cond. $2411.60$
Root an. cond. $49.1081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s + 9-s + 13-s + 4·19-s − 4·21-s − 5·25-s + 27-s + 10·31-s − 2·37-s + 39-s + 6·41-s + 10·43-s + 9·49-s − 6·53-s + 4·57-s + 2·61-s − 4·63-s + 2·67-s − 12·71-s + 10·73-s − 5·75-s − 10·79-s + 81-s + 12·83-s + 12·89-s − 4·91-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.277·13-s + 0.917·19-s − 0.872·21-s − 25-s + 0.192·27-s + 1.79·31-s − 0.328·37-s + 0.160·39-s + 0.937·41-s + 1.52·43-s + 9/7·49-s − 0.824·53-s + 0.529·57-s + 0.256·61-s − 0.503·63-s + 0.244·67-s − 1.42·71-s + 1.17·73-s − 0.577·75-s − 1.12·79-s + 1/9·81-s + 1.31·83-s + 1.27·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 302016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 302016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(302016\)    =    \(2^{6} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2411.60\)
Root analytic conductor: \(49.1081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 302016,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06406512791017, −12.35142111952872, −12.20672889482915, −11.60887404256848, −11.06258384169154, −10.48516941801663, −10.00999945367598, −9.722882017188817, −9.202599876851798, −8.986632867545131, −8.206582873264360, −7.850402139386665, −7.337693864649036, −6.878012121618918, −6.176556333714210, −6.115129522000276, −5.419842289880881, −4.719691963179884, −4.182677413875832, −3.614996927956396, −3.283840144048288, −2.611592295932710, −2.354924859551903, −1.342030154065384, −0.8169894289225903, 0, 0.8169894289225903, 1.342030154065384, 2.354924859551903, 2.611592295932710, 3.283840144048288, 3.614996927956396, 4.182677413875832, 4.719691963179884, 5.419842289880881, 6.115129522000276, 6.176556333714210, 6.878012121618918, 7.337693864649036, 7.850402139386665, 8.206582873264360, 8.986632867545131, 9.202599876851798, 9.722882017188817, 10.00999945367598, 10.48516941801663, 11.06258384169154, 11.60887404256848, 12.20672889482915, 12.35142111952872, 13.06406512791017

Graph of the $Z$-function along the critical line