Properties

Label 2-300352-1.1-c1-0-17
Degree $2$
Conductor $300352$
Sign $1$
Analytic cond. $2398.32$
Root an. cond. $48.9726$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s − 3·9-s + 6·11-s − 13-s + 17-s − 3·23-s − 25-s − 6·29-s + 9·31-s − 4·35-s − 37-s − 3·41-s + 3·43-s + 6·45-s − 6·47-s − 3·49-s + 6·53-s − 12·55-s + 5·59-s − 7·61-s − 6·63-s + 2·65-s + 3·67-s − 8·71-s − 6·73-s + 12·77-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s − 9-s + 1.80·11-s − 0.277·13-s + 0.242·17-s − 0.625·23-s − 1/5·25-s − 1.11·29-s + 1.61·31-s − 0.676·35-s − 0.164·37-s − 0.468·41-s + 0.457·43-s + 0.894·45-s − 0.875·47-s − 3/7·49-s + 0.824·53-s − 1.61·55-s + 0.650·59-s − 0.896·61-s − 0.755·63-s + 0.248·65-s + 0.366·67-s − 0.949·71-s − 0.702·73-s + 1.36·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300352\)    =    \(2^{6} \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2398.32\)
Root analytic conductor: \(48.9726\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 300352,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.375040510\)
\(L(\frac12)\) \(\approx\) \(1.375040510\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 + T \)
19 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.49232839826171, −11.91687644405699, −11.75752150816066, −11.55851203988222, −11.04590141427428, −10.47858068919878, −9.885154612152117, −9.372355273903709, −9.008618495026467, −8.355421254193460, −8.145974185377764, −7.736098741129467, −6.984735600836319, −6.742992397512307, −5.998626623647209, −5.701193522368114, −5.039382163319322, −4.340441609299345, −4.175800144279182, −3.518507427784449, −3.080450739213371, −2.336324931437774, −1.663570104198381, −1.159898091463740, −0.3289354346000692, 0.3289354346000692, 1.159898091463740, 1.663570104198381, 2.336324931437774, 3.080450739213371, 3.518507427784449, 4.175800144279182, 4.340441609299345, 5.039382163319322, 5.701193522368114, 5.998626623647209, 6.742992397512307, 6.984735600836319, 7.736098741129467, 8.145974185377764, 8.355421254193460, 9.008618495026467, 9.372355273903709, 9.885154612152117, 10.47858068919878, 11.04590141427428, 11.55851203988222, 11.75752150816066, 11.91687644405699, 12.49232839826171

Graph of the $Z$-function along the critical line