Properties

Label 2-546e2-1.1-c1-0-88
Degree $2$
Conductor $298116$
Sign $-1$
Analytic cond. $2380.46$
Root an. cond. $48.7900$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 2·17-s + 4·23-s + 11·25-s − 2·29-s − 8·31-s + 8·37-s − 4·41-s + 8·43-s − 6·53-s − 8·59-s + 10·61-s + 8·67-s + 4·73-s + 12·79-s − 8·83-s + 8·85-s − 12·89-s − 12·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 16·115-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.485·17-s + 0.834·23-s + 11/5·25-s − 0.371·29-s − 1.43·31-s + 1.31·37-s − 0.624·41-s + 1.21·43-s − 0.824·53-s − 1.04·59-s + 1.28·61-s + 0.977·67-s + 0.468·73-s + 1.35·79-s − 0.878·83-s + 0.867·85-s − 1.27·89-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 1.49·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(298116\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2380.46\)
Root analytic conductor: \(48.7900\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 298116,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.97148063518627, −12.57330020419760, −12.22858098532548, −11.28852160997116, −11.09924633911249, −10.63541604384428, −10.08645907149223, −9.632250576683762, −9.311262655570275, −9.034476047176209, −8.325447925022169, −7.837156257458598, −7.236710204765265, −6.736202172653076, −6.346351248426136, −5.741197015643282, −5.425094856777660, −5.065160938054357, −4.363145687031351, −3.725832224065044, −3.103909279537950, −2.493748883578274, −2.165075199523793, −1.347450890822948, −1.097353294209362, 0, 1.097353294209362, 1.347450890822948, 2.165075199523793, 2.493748883578274, 3.103909279537950, 3.725832224065044, 4.363145687031351, 5.065160938054357, 5.425094856777660, 5.741197015643282, 6.346351248426136, 6.736202172653076, 7.236710204765265, 7.837156257458598, 8.325447925022169, 9.034476047176209, 9.311262655570275, 9.632250576683762, 10.08645907149223, 10.63541604384428, 11.09924633911249, 11.28852160997116, 12.22858098532548, 12.57330020419760, 12.97148063518627

Graph of the $Z$-function along the critical line