Properties

Label 2-292410-1.1-c1-0-6
Degree $2$
Conductor $292410$
Sign $1$
Analytic cond. $2334.90$
Root an. cond. $48.3208$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 2·7-s − 8-s + 10-s + 4·13-s − 2·14-s + 16-s − 6·17-s − 20-s + 25-s − 4·26-s + 2·28-s − 6·29-s + 4·31-s − 32-s + 6·34-s − 2·35-s − 8·37-s + 40-s − 6·41-s − 7·43-s − 6·47-s − 3·49-s − 50-s + 4·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.755·7-s − 0.353·8-s + 0.316·10-s + 1.10·13-s − 0.534·14-s + 1/4·16-s − 1.45·17-s − 0.223·20-s + 1/5·25-s − 0.784·26-s + 0.377·28-s − 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.02·34-s − 0.338·35-s − 1.31·37-s + 0.158·40-s − 0.937·41-s − 1.06·43-s − 0.875·47-s − 3/7·49-s − 0.141·50-s + 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 292410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 292410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(292410\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2334.90\)
Root analytic conductor: \(48.3208\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 292410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6663871396\)
\(L(\frac12)\) \(\approx\) \(0.6663871396\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81248233080499, −12.01409305849457, −11.52727741168141, −11.35431281442169, −11.02917421182138, −10.32815720587653, −10.11681890095028, −9.369572244836867, −8.893764442458581, −8.481948862557562, −8.241685910395961, −7.751107931528267, −7.022108809434914, −6.785306307498071, −6.263496690339058, −5.676454590816660, −4.994879550195928, −4.671735735790807, −3.958162536133919, −3.479538234442658, −2.975983467179966, −2.046673806228259, −1.771437089363973, −1.158212784732499, −0.2514836202092535, 0.2514836202092535, 1.158212784732499, 1.771437089363973, 2.046673806228259, 2.975983467179966, 3.479538234442658, 3.958162536133919, 4.671735735790807, 4.994879550195928, 5.676454590816660, 6.263496690339058, 6.785306307498071, 7.022108809434914, 7.751107931528267, 8.241685910395961, 8.481948862557562, 8.893764442458581, 9.369572244836867, 10.11681890095028, 10.32815720587653, 11.02917421182138, 11.35431281442169, 11.52727741168141, 12.01409305849457, 12.81248233080499

Graph of the $Z$-function along the critical line