Properties

Label 2-291312-1.1-c1-0-135
Degree $2$
Conductor $291312$
Sign $-1$
Analytic cond. $2326.13$
Root an. cond. $48.2300$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 7-s − 3·11-s + 5·13-s − 2·19-s + 4·25-s + 2·31-s + 3·35-s + 37-s − 5·43-s − 6·47-s + 49-s + 3·53-s − 9·55-s − 12·59-s − 8·61-s + 15·65-s − 11·67-s + 12·71-s + 7·73-s − 3·77-s − 7·79-s − 3·83-s + 9·89-s + 5·91-s − 6·95-s − 17·97-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.377·7-s − 0.904·11-s + 1.38·13-s − 0.458·19-s + 4/5·25-s + 0.359·31-s + 0.507·35-s + 0.164·37-s − 0.762·43-s − 0.875·47-s + 1/7·49-s + 0.412·53-s − 1.21·55-s − 1.56·59-s − 1.02·61-s + 1.86·65-s − 1.34·67-s + 1.42·71-s + 0.819·73-s − 0.341·77-s − 0.787·79-s − 0.329·83-s + 0.953·89-s + 0.524·91-s − 0.615·95-s − 1.72·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(291312\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2326.13\)
Root analytic conductor: \(48.2300\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 291312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06634273229327, −12.60416600185390, −12.06661937902711, −11.50251685547978, −10.83142455534285, −10.79435682062383, −10.22267704735532, −9.738289000873431, −9.316555541547831, −8.757593946394443, −8.381927273591264, −7.894425985264424, −7.427969550944863, −6.590777082113366, −6.334359774541399, −5.943009534255116, −5.267395879856327, −5.091012789126603, −4.320755966699843, −3.837402742746184, −2.968520959261147, −2.772852254133635, −1.785670595502071, −1.714344733663583, −0.9229091988630348, 0, 0.9229091988630348, 1.714344733663583, 1.785670595502071, 2.772852254133635, 2.968520959261147, 3.837402742746184, 4.320755966699843, 5.091012789126603, 5.267395879856327, 5.943009534255116, 6.334359774541399, 6.590777082113366, 7.427969550944863, 7.894425985264424, 8.381927273591264, 8.757593946394443, 9.316555541547831, 9.738289000873431, 10.22267704735532, 10.79435682062383, 10.83142455534285, 11.50251685547978, 12.06661937902711, 12.60416600185390, 13.06634273229327

Graph of the $Z$-function along the critical line