| L(s)  = 1  |         + 3·5-s     + 7-s         − 3·11-s     + 5·13-s             − 2·19-s             + 4·25-s             + 2·31-s         + 3·35-s     + 37-s             − 5·43-s         − 6·47-s     + 49-s         + 3·53-s     − 9·55-s         − 12·59-s     − 8·61-s         + 15·65-s     − 11·67-s         + 12·71-s     + 7·73-s         − 3·77-s     − 7·79-s         − 3·83-s             + 9·89-s     + 5·91-s         − 6·95-s     − 17·97-s  + ⋯ | 
 
| L(s)  = 1  |         + 1.34·5-s     + 0.377·7-s         − 0.904·11-s     + 1.38·13-s             − 0.458·19-s             + 4/5·25-s             + 0.359·31-s         + 0.507·35-s     + 0.164·37-s             − 0.762·43-s         − 0.875·47-s     + 1/7·49-s         + 0.412·53-s     − 1.21·55-s         − 1.56·59-s     − 1.02·61-s         + 1.86·65-s     − 1.34·67-s         + 1.42·71-s     + 0.819·73-s         − 0.341·77-s     − 0.787·79-s         − 0.329·83-s             + 0.953·89-s     + 0.524·91-s         − 0.615·95-s     − 1.72·97-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 7 |  \( 1 - T \)  |    | 
 | 17 |  \( 1 \)  |    | 
| good | 5 |  \( 1 - 3 T + p T^{2} \)  |  1.5.ad  | 
 | 11 |  \( 1 + 3 T + p T^{2} \)  |  1.11.d  | 
 | 13 |  \( 1 - 5 T + p T^{2} \)  |  1.13.af  | 
 | 19 |  \( 1 + 2 T + p T^{2} \)  |  1.19.c  | 
 | 23 |  \( 1 + p T^{2} \)  |  1.23.a  | 
 | 29 |  \( 1 + p T^{2} \)  |  1.29.a  | 
 | 31 |  \( 1 - 2 T + p T^{2} \)  |  1.31.ac  | 
 | 37 |  \( 1 - T + p T^{2} \)  |  1.37.ab  | 
 | 41 |  \( 1 + p T^{2} \)  |  1.41.a  | 
 | 43 |  \( 1 + 5 T + p T^{2} \)  |  1.43.f  | 
 | 47 |  \( 1 + 6 T + p T^{2} \)  |  1.47.g  | 
 | 53 |  \( 1 - 3 T + p T^{2} \)  |  1.53.ad  | 
 | 59 |  \( 1 + 12 T + p T^{2} \)  |  1.59.m  | 
 | 61 |  \( 1 + 8 T + p T^{2} \)  |  1.61.i  | 
 | 67 |  \( 1 + 11 T + p T^{2} \)  |  1.67.l  | 
 | 71 |  \( 1 - 12 T + p T^{2} \)  |  1.71.am  | 
 | 73 |  \( 1 - 7 T + p T^{2} \)  |  1.73.ah  | 
 | 79 |  \( 1 + 7 T + p T^{2} \)  |  1.79.h  | 
 | 83 |  \( 1 + 3 T + p T^{2} \)  |  1.83.d  | 
 | 89 |  \( 1 - 9 T + p T^{2} \)  |  1.89.aj  | 
 | 97 |  \( 1 + 17 T + p T^{2} \)  |  1.97.r  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.06634273229327, −12.60416600185390, −12.06661937902711, −11.50251685547978, −10.83142455534285, −10.79435682062383, −10.22267704735532, −9.738289000873431, −9.316555541547831, −8.757593946394443, −8.381927273591264, −7.894425985264424, −7.427969550944863, −6.590777082113366, −6.334359774541399, −5.943009534255116, −5.267395879856327, −5.091012789126603, −4.320755966699843, −3.837402742746184, −2.968520959261147, −2.772852254133635, −1.785670595502071, −1.714344733663583, −0.9229091988630348, 0, 
0.9229091988630348, 1.714344733663583, 1.785670595502071, 2.772852254133635, 2.968520959261147, 3.837402742746184, 4.320755966699843, 5.091012789126603, 5.267395879856327, 5.943009534255116, 6.334359774541399, 6.590777082113366, 7.427969550944863, 7.894425985264424, 8.381927273591264, 8.757593946394443, 9.316555541547831, 9.738289000873431, 10.22267704735532, 10.79435682062383, 10.83142455534285, 11.50251685547978, 12.06661937902711, 12.60416600185390, 13.06634273229327