Properties

Label 2-291312-1.1-c1-0-17
Degree $2$
Conductor $291312$
Sign $1$
Analytic cond. $2326.13$
Root an. cond. $48.2300$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s − 4·11-s − 2·13-s − 4·19-s − 8·23-s − 25-s + 6·29-s − 2·35-s + 2·37-s + 10·41-s + 4·43-s + 49-s − 6·53-s + 8·55-s − 4·59-s − 6·61-s + 4·65-s + 12·67-s + 8·71-s + 6·73-s − 4·77-s − 12·83-s + 6·89-s − 2·91-s + 8·95-s − 2·97-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s − 1.20·11-s − 0.554·13-s − 0.917·19-s − 1.66·23-s − 1/5·25-s + 1.11·29-s − 0.338·35-s + 0.328·37-s + 1.56·41-s + 0.609·43-s + 1/7·49-s − 0.824·53-s + 1.07·55-s − 0.520·59-s − 0.768·61-s + 0.496·65-s + 1.46·67-s + 0.949·71-s + 0.702·73-s − 0.455·77-s − 1.31·83-s + 0.635·89-s − 0.209·91-s + 0.820·95-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 291312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(291312\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2326.13\)
Root analytic conductor: \(48.2300\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 291312,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7030188373\)
\(L(\frac12)\) \(\approx\) \(0.7030188373\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.50600035400855, −12.43728232671535, −11.82938487505323, −11.20163259846990, −11.04409953498601, −10.45417035863923, −9.927628821469026, −9.701637535881233, −8.845654527674099, −8.460530438564796, −7.963133921898200, −7.627009497620560, −7.427954317546072, −6.496656573869284, −6.170200181507369, −5.619276090640942, −4.934922202138430, −4.591370249493031, −4.081670678659481, −3.632467815623032, −2.843806843127369, −2.360572375815981, −1.957855917290653, −0.9617108115997332, −0.2543364531731940, 0.2543364531731940, 0.9617108115997332, 1.957855917290653, 2.360572375815981, 2.843806843127369, 3.632467815623032, 4.081670678659481, 4.591370249493031, 4.934922202138430, 5.619276090640942, 6.170200181507369, 6.496656573869284, 7.427954317546072, 7.627009497620560, 7.963133921898200, 8.460530438564796, 8.845654527674099, 9.701637535881233, 9.927628821469026, 10.45417035863923, 11.04409953498601, 11.20163259846990, 11.82938487505323, 12.43728232671535, 12.50600035400855

Graph of the $Z$-function along the critical line