L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s + 7-s + 8-s − 2·9-s + 10-s − 12-s − 4·13-s + 14-s − 15-s + 16-s − 2·18-s − 4·19-s + 20-s − 21-s − 3·23-s − 24-s + 25-s − 4·26-s + 5·27-s + 28-s − 6·29-s − 30-s − 2·31-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s − 1.10·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.471·18-s − 0.917·19-s + 0.223·20-s − 0.218·21-s − 0.625·23-s − 0.204·24-s + 1/5·25-s − 0.784·26-s + 0.962·27-s + 0.188·28-s − 1.11·29-s − 0.182·30-s − 0.359·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2890 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2890 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 5 | \( 1 - T \) | |
| 17 | \( 1 \) | |
good | 3 | \( 1 + T + p T^{2} \) | 1.3.b |
| 7 | \( 1 - T + p T^{2} \) | 1.7.ab |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e |
| 23 | \( 1 + 3 T + p T^{2} \) | 1.23.d |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 - 4 T + p T^{2} \) | 1.37.ae |
| 41 | \( 1 - 3 T + p T^{2} \) | 1.41.ad |
| 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e |
| 47 | \( 1 + 12 T + p T^{2} \) | 1.47.m |
| 53 | \( 1 + 12 T + p T^{2} \) | 1.53.m |
| 59 | \( 1 + 6 T + p T^{2} \) | 1.59.g |
| 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak |
| 67 | \( 1 + T + p T^{2} \) | 1.67.b |
| 71 | \( 1 + p T^{2} \) | 1.71.a |
| 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c |
| 79 | \( 1 - 10 T + p T^{2} \) | 1.79.ak |
| 83 | \( 1 - 15 T + p T^{2} \) | 1.83.ap |
| 89 | \( 1 + 3 T + p T^{2} \) | 1.89.d |
| 97 | \( 1 + 8 T + p T^{2} \) | 1.97.i |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.215355796449694720056671999732, −7.59369515993688774515489394409, −6.51747884594868183009563064549, −6.11041884469375590564567023076, −5.14492615007007949643340050304, −4.78785436429616575598576720336, −3.65015436216247333410116611387, −2.59097489244637378348063729898, −1.76202120492256027800700859266, 0,
1.76202120492256027800700859266, 2.59097489244637378348063729898, 3.65015436216247333410116611387, 4.78785436429616575598576720336, 5.14492615007007949643340050304, 6.11041884469375590564567023076, 6.51747884594868183009563064549, 7.59369515993688774515489394409, 8.215355796449694720056671999732