Properties

Label 2-2890-1.1-c1-0-79
Degree $2$
Conductor $2890$
Sign $-1$
Analytic cond. $23.0767$
Root an. cond. $4.80382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 7-s + 8-s − 2·9-s + 10-s − 12-s − 4·13-s + 14-s − 15-s + 16-s − 2·18-s − 4·19-s + 20-s − 21-s − 3·23-s − 24-s + 25-s − 4·26-s + 5·27-s + 28-s − 6·29-s − 30-s − 2·31-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s − 1.10·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.471·18-s − 0.917·19-s + 0.223·20-s − 0.218·21-s − 0.625·23-s − 0.204·24-s + 1/5·25-s − 0.784·26-s + 0.962·27-s + 0.188·28-s − 1.11·29-s − 0.182·30-s − 0.359·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2890 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2890 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2890\)    =    \(2 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(23.0767\)
Root analytic conductor: \(4.80382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2890,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.215355796449694720056671999732, −7.59369515993688774515489394409, −6.51747884594868183009563064549, −6.11041884469375590564567023076, −5.14492615007007949643340050304, −4.78785436429616575598576720336, −3.65015436216247333410116611387, −2.59097489244637378348063729898, −1.76202120492256027800700859266, 0, 1.76202120492256027800700859266, 2.59097489244637378348063729898, 3.65015436216247333410116611387, 4.78785436429616575598576720336, 5.14492615007007949643340050304, 6.11041884469375590564567023076, 6.51747884594868183009563064549, 7.59369515993688774515489394409, 8.215355796449694720056671999732

Graph of the $Z$-function along the critical line