Properties

Label 2-283140-1.1-c1-0-10
Degree $2$
Conductor $283140$
Sign $1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 13-s − 3·17-s + 5·23-s + 25-s − 2·29-s + 5·31-s + 2·35-s − 10·37-s + 10·43-s + 47-s − 3·49-s + 13·53-s + 5·61-s − 65-s − 8·67-s + 6·71-s + 2·73-s + 7·79-s + 4·83-s + 3·85-s − 14·89-s − 2·91-s + 6·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 0.277·13-s − 0.727·17-s + 1.04·23-s + 1/5·25-s − 0.371·29-s + 0.898·31-s + 0.338·35-s − 1.64·37-s + 1.52·43-s + 0.145·47-s − 3/7·49-s + 1.78·53-s + 0.640·61-s − 0.124·65-s − 0.977·67-s + 0.712·71-s + 0.234·73-s + 0.787·79-s + 0.439·83-s + 0.325·85-s − 1.48·89-s − 0.209·91-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.068322572\)
\(L(\frac12)\) \(\approx\) \(2.068322572\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72916668063609, −12.37086167217206, −11.79271247085825, −11.37541024793459, −10.92695219599508, −10.43068612887363, −10.08513481566434, −9.404635254547573, −9.038212647874414, −8.615487721255841, −8.194090525409114, −7.489764464929410, −7.019067464774277, −6.797212091558202, −6.116284111284978, −5.695199709459438, −5.075040671737895, −4.537627783701956, −4.049035822569108, −3.439929772813567, −3.086583774376901, −2.393805167231879, −1.853514442904400, −0.9111483964413720, −0.4734805293053681, 0.4734805293053681, 0.9111483964413720, 1.853514442904400, 2.393805167231879, 3.086583774376901, 3.439929772813567, 4.049035822569108, 4.537627783701956, 5.075040671737895, 5.695199709459438, 6.116284111284978, 6.797212091558202, 7.019067464774277, 7.489764464929410, 8.194090525409114, 8.615487721255841, 9.038212647874414, 9.404635254547573, 10.08513481566434, 10.43068612887363, 10.92695219599508, 11.37541024793459, 11.79271247085825, 12.37086167217206, 12.72916668063609

Graph of the $Z$-function along the critical line