Properties

Label 2-282240-1.1-c1-0-221
Degree $2$
Conductor $282240$
Sign $-1$
Analytic cond. $2253.69$
Root an. cond. $47.4731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·13-s + 4·19-s + 25-s + 6·29-s + 2·31-s − 6·37-s − 4·41-s − 4·43-s − 8·47-s − 2·53-s + 4·59-s + 2·61-s + 2·65-s − 8·67-s − 8·71-s + 6·73-s + 6·79-s + 4·83-s + 4·95-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.554·13-s + 0.917·19-s + 1/5·25-s + 1.11·29-s + 0.359·31-s − 0.986·37-s − 0.624·41-s − 0.609·43-s − 1.16·47-s − 0.274·53-s + 0.520·59-s + 0.256·61-s + 0.248·65-s − 0.977·67-s − 0.949·71-s + 0.702·73-s + 0.675·79-s + 0.439·83-s + 0.410·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(282240\)    =    \(2^{7} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(2253.69\)
Root analytic conductor: \(47.4731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 282240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13888058493554, −12.47761622760342, −11.89179182932800, −11.78789124244032, −11.14358980143162, −10.51034265187305, −10.32813654090793, −9.736145381153139, −9.331130531683825, −8.814463818607421, −8.291219615778356, −7.997975721794003, −7.307922224866821, −6.724973011274464, −6.518065452817106, −5.817808224782654, −5.419232467467981, −4.816515296861335, −4.501068104274681, −3.564701795428758, −3.336678395511840, −2.704187639130293, −2.016358416704345, −1.427250996920427, −0.9012168883101616, 0, 0.9012168883101616, 1.427250996920427, 2.016358416704345, 2.704187639130293, 3.336678395511840, 3.564701795428758, 4.501068104274681, 4.816515296861335, 5.419232467467981, 5.817808224782654, 6.518065452817106, 6.724973011274464, 7.307922224866821, 7.997975721794003, 8.291219615778356, 8.814463818607421, 9.331130531683825, 9.736145381153139, 10.32813654090793, 10.51034265187305, 11.14358980143162, 11.78789124244032, 11.89179182932800, 12.47761622760342, 13.13888058493554

Graph of the $Z$-function along the critical line