Properties

Label 2-281775-1.1-c1-0-20
Degree $2$
Conductor $281775$
Sign $1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 3·8-s + 9-s − 4·11-s − 12-s − 13-s − 16-s + 18-s − 4·19-s − 4·22-s + 8·23-s − 3·24-s − 26-s + 27-s + 2·29-s + 8·31-s + 5·32-s − 4·33-s − 36-s + 6·37-s − 4·38-s − 39-s + 6·41-s + 4·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.06·8-s + 1/3·9-s − 1.20·11-s − 0.288·12-s − 0.277·13-s − 1/4·16-s + 0.235·18-s − 0.917·19-s − 0.852·22-s + 1.66·23-s − 0.612·24-s − 0.196·26-s + 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.883·32-s − 0.696·33-s − 1/6·36-s + 0.986·37-s − 0.648·38-s − 0.160·39-s + 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.490713503\)
\(L(\frac12)\) \(\approx\) \(3.490713503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89360071454049, −12.46344419335436, −12.10212542789400, −11.29146505881785, −11.00991349329518, −10.36865088979074, −10.01506050164708, −9.432246232522099, −9.047632789804008, −8.526908740937905, −8.216549389059472, −7.507142818245635, −7.328747012851629, −6.369720205329296, −6.158513169540508, −5.547735396306720, −4.829504134111865, −4.623482308062136, −4.282701405772051, −3.378767173529794, −3.011624811001526, −2.605356636054970, −2.048651130794546, −1.003514412907971, −0.4925400396295275, 0.4925400396295275, 1.003514412907971, 2.048651130794546, 2.605356636054970, 3.011624811001526, 3.378767173529794, 4.282701405772051, 4.623482308062136, 4.829504134111865, 5.547735396306720, 6.158513169540508, 6.369720205329296, 7.328747012851629, 7.507142818245635, 8.216549389059472, 8.526908740937905, 9.047632789804008, 9.432246232522099, 10.01506050164708, 10.36865088979074, 11.00991349329518, 11.29146505881785, 12.10212542789400, 12.46344419335436, 12.89360071454049

Graph of the $Z$-function along the critical line