Properties

Label 2-281775-1.1-c1-0-22
Degree $2$
Conductor $281775$
Sign $1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 7-s + 9-s + 11-s − 2·12-s + 13-s + 4·16-s − 4·19-s − 21-s − 3·23-s + 27-s + 2·28-s + 8·29-s + 4·31-s + 33-s − 2·36-s + 3·37-s + 39-s + 9·41-s + 8·43-s − 2·44-s − 10·47-s + 4·48-s − 6·49-s − 2·52-s + 53-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.577·12-s + 0.277·13-s + 16-s − 0.917·19-s − 0.218·21-s − 0.625·23-s + 0.192·27-s + 0.377·28-s + 1.48·29-s + 0.718·31-s + 0.174·33-s − 1/3·36-s + 0.493·37-s + 0.160·39-s + 1.40·41-s + 1.21·43-s − 0.301·44-s − 1.45·47-s + 0.577·48-s − 6/7·49-s − 0.277·52-s + 0.137·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.675824214\)
\(L(\frac12)\) \(\approx\) \(2.675824214\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85973636743495, −12.51546399165274, −11.94398445246410, −11.31823757950264, −10.89901437933989, −10.21825890287441, −9.870471115648369, −9.589412797156783, −9.006046213274926, −8.540442090773113, −8.163939736340997, −7.909736816290349, −7.097587224598394, −6.595442060141729, −6.145533624382587, −5.680975743088996, −4.920247443199147, −4.513431608699839, −4.017872640159872, −3.676243027730835, −2.927809408367629, −2.515799323987322, −1.768124703203761, −0.9772905591174997, −0.5135021113735553, 0.5135021113735553, 0.9772905591174997, 1.768124703203761, 2.515799323987322, 2.927809408367629, 3.676243027730835, 4.017872640159872, 4.513431608699839, 4.920247443199147, 5.680975743088996, 6.145533624382587, 6.595442060141729, 7.097587224598394, 7.909736816290349, 8.163939736340997, 8.540442090773113, 9.006046213274926, 9.589412797156783, 9.870471115648369, 10.21825890287441, 10.89901437933989, 11.31823757950264, 11.94398445246410, 12.51546399165274, 12.85973636743495

Graph of the $Z$-function along the critical line