Properties

Label 2-27968-1.1-c1-0-2
Degree $2$
Conductor $27968$
Sign $1$
Analytic cond. $223.325$
Root an. cond. $14.9440$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3·5-s − 2·7-s + 6·9-s − 11-s − 2·13-s − 9·15-s − 19-s + 6·21-s − 23-s + 4·25-s − 9·27-s + 3·29-s − 8·31-s + 3·33-s − 6·35-s − 8·37-s + 6·39-s − 6·41-s − 7·43-s + 18·45-s − 7·47-s − 3·49-s + 12·53-s − 3·55-s + 3·57-s − 11·59-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.34·5-s − 0.755·7-s + 2·9-s − 0.301·11-s − 0.554·13-s − 2.32·15-s − 0.229·19-s + 1.30·21-s − 0.208·23-s + 4/5·25-s − 1.73·27-s + 0.557·29-s − 1.43·31-s + 0.522·33-s − 1.01·35-s − 1.31·37-s + 0.960·39-s − 0.937·41-s − 1.06·43-s + 2.68·45-s − 1.02·47-s − 3/7·49-s + 1.64·53-s − 0.404·55-s + 0.397·57-s − 1.43·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27968\)    =    \(2^{6} \cdot 19 \cdot 23\)
Sign: $1$
Analytic conductor: \(223.325\)
Root analytic conductor: \(14.9440\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27968,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4832205852\)
\(L(\frac12)\) \(\approx\) \(0.4832205852\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 + T \)
23 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.24742894733177, −14.83067071781552, −13.98820860133047, −13.40747832800555, −13.10541955759987, −12.44655333990757, −12.10526297598154, −11.50994098402586, −10.76263766092483, −10.36390559341201, −10.01192204207374, −9.484871875842677, −8.887203509456947, −7.981806732656156, −7.086744666022899, −6.687390560702822, −6.285463913689970, −5.585854183805540, −5.264336999242147, −4.756024824496463, −3.813502895459258, −2.987298641837658, −1.994850441414444, −1.477692111861786, −0.2961412038889810, 0.2961412038889810, 1.477692111861786, 1.994850441414444, 2.987298641837658, 3.813502895459258, 4.756024824496463, 5.264336999242147, 5.585854183805540, 6.285463913689970, 6.687390560702822, 7.086744666022899, 7.981806732656156, 8.887203509456947, 9.484871875842677, 10.01192204207374, 10.36390559341201, 10.76263766092483, 11.50994098402586, 12.10526297598154, 12.44655333990757, 13.10541955759987, 13.40747832800555, 13.98820860133047, 14.83067071781552, 15.24742894733177

Graph of the $Z$-function along the critical line