Properties

Label 2-273600-1.1-c1-0-9
Degree $2$
Conductor $273600$
Sign $1$
Analytic cond. $2184.70$
Root an. cond. $46.7408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 4·11-s − 6·13-s + 4·17-s + 19-s − 4·23-s + 6·29-s + 6·31-s + 10·37-s − 4·41-s − 12·43-s − 4·47-s − 3·49-s + 10·53-s − 10·59-s − 2·61-s − 12·67-s + 8·71-s + 2·73-s + 8·77-s − 10·79-s + 2·83-s + 8·89-s + 12·91-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.755·7-s − 1.20·11-s − 1.66·13-s + 0.970·17-s + 0.229·19-s − 0.834·23-s + 1.11·29-s + 1.07·31-s + 1.64·37-s − 0.624·41-s − 1.82·43-s − 0.583·47-s − 3/7·49-s + 1.37·53-s − 1.30·59-s − 0.256·61-s − 1.46·67-s + 0.949·71-s + 0.234·73-s + 0.911·77-s − 1.12·79-s + 0.219·83-s + 0.847·89-s + 1.25·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 273600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(273600\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(2184.70\)
Root analytic conductor: \(46.7408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 273600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5215377920\)
\(L(\frac12)\) \(\approx\) \(0.5215377920\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81470049747328, −12.17844777914226, −11.96590133077552, −11.62840834825112, −10.78450516303007, −10.17951529625847, −10.10935153404312, −9.717196330396400, −9.231542271016111, −8.448345178756908, −7.941076163122460, −7.801706618341252, −7.164642995838767, −6.606649091437642, −6.208777979587564, −5.586626223678407, −5.063303713274952, −4.731716086664695, −4.146043022151250, −3.326733442912186, −2.856917338707735, −2.617086109220282, −1.854163149020454, −1.040101316394157, −0.2092214558918121, 0.2092214558918121, 1.040101316394157, 1.854163149020454, 2.617086109220282, 2.856917338707735, 3.326733442912186, 4.146043022151250, 4.731716086664695, 5.063303713274952, 5.586626223678407, 6.208777979587564, 6.606649091437642, 7.164642995838767, 7.801706618341252, 7.941076163122460, 8.448345178756908, 9.231542271016111, 9.717196330396400, 10.10935153404312, 10.17951529625847, 10.78450516303007, 11.62840834825112, 11.96590133077552, 12.17844777914226, 12.81470049747328

Graph of the $Z$-function along the critical line