Properties

Label 2-165e2-1.1-c1-0-20
Degree $2$
Conductor $27225$
Sign $1$
Analytic cond. $217.392$
Root an. cond. $14.7442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 3·7-s − 13-s + 6·14-s − 4·16-s + 2·17-s + 5·19-s − 6·23-s − 2·26-s + 6·28-s + 10·29-s − 3·31-s − 8·32-s + 4·34-s + 2·37-s + 10·38-s − 8·41-s − 43-s − 12·46-s − 2·47-s + 2·49-s − 2·52-s + 4·53-s + 20·58-s + 10·59-s − 7·61-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.13·7-s − 0.277·13-s + 1.60·14-s − 16-s + 0.485·17-s + 1.14·19-s − 1.25·23-s − 0.392·26-s + 1.13·28-s + 1.85·29-s − 0.538·31-s − 1.41·32-s + 0.685·34-s + 0.328·37-s + 1.62·38-s − 1.24·41-s − 0.152·43-s − 1.76·46-s − 0.291·47-s + 2/7·49-s − 0.277·52-s + 0.549·53-s + 2.62·58-s + 1.30·59-s − 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(217.392\)
Root analytic conductor: \(14.7442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.859620764\)
\(L(\frac12)\) \(\approx\) \(5.859620764\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.10597467852376, −14.54224401881932, −14.08766790804382, −13.87880584553911, −13.26757711893551, −12.54259504844652, −12.03280578741956, −11.75367098075227, −11.27682592021489, −10.48066788959873, −9.964912409374768, −9.308352170085874, −8.477186363713402, −8.068771979813621, −7.404354739687299, −6.747414311960389, −6.091306411451846, −5.489049223321053, −4.896427432808544, −4.642283634780656, −3.736439733866454, −3.284854025964504, −2.417021690744215, −1.781391951651428, −0.7525081589095767, 0.7525081589095767, 1.781391951651428, 2.417021690744215, 3.284854025964504, 3.736439733866454, 4.642283634780656, 4.896427432808544, 5.489049223321053, 6.091306411451846, 6.747414311960389, 7.404354739687299, 8.068771979813621, 8.477186363713402, 9.308352170085874, 9.964912409374768, 10.48066788959873, 11.27682592021489, 11.75367098075227, 12.03280578741956, 12.54259504844652, 13.26757711893551, 13.87880584553911, 14.08766790804382, 14.54224401881932, 15.10597467852376

Graph of the $Z$-function along the critical line