Properties

Label 2-165e2-1.1-c1-0-50
Degree $2$
Conductor $27225$
Sign $-1$
Analytic cond. $217.392$
Root an. cond. $14.7442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 2·7-s + 4·13-s − 4·14-s − 4·16-s + 2·17-s − 23-s + 8·26-s − 4·28-s + 7·31-s − 8·32-s + 4·34-s − 3·37-s − 8·41-s − 6·43-s − 2·46-s + 8·47-s − 3·49-s + 8·52-s − 6·53-s − 5·59-s − 12·61-s + 14·62-s − 8·64-s + 7·67-s + 4·68-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.755·7-s + 1.10·13-s − 1.06·14-s − 16-s + 0.485·17-s − 0.208·23-s + 1.56·26-s − 0.755·28-s + 1.25·31-s − 1.41·32-s + 0.685·34-s − 0.493·37-s − 1.24·41-s − 0.914·43-s − 0.294·46-s + 1.16·47-s − 3/7·49-s + 1.10·52-s − 0.824·53-s − 0.650·59-s − 1.53·61-s + 1.77·62-s − 64-s + 0.855·67-s + 0.485·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(217.392\)
Root analytic conductor: \(14.7442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.33940689632482, −15.14361816389971, −14.16131652726989, −13.87032803173071, −13.53248828748555, −12.88268381343334, −12.47648635038659, −11.93342113904611, −11.48273863973369, −10.77666910539994, −10.24618270219260, −9.566832397593153, −8.999499320603777, −8.345209607147577, −7.744963111966630, −6.785311432966563, −6.452043845696772, −5.984408332162412, −5.291666276110636, −4.740173888320993, −4.012224777154048, −3.394929907785727, −3.084086947354049, −2.163685117290156, −1.210092103040835, 0, 1.210092103040835, 2.163685117290156, 3.084086947354049, 3.394929907785727, 4.012224777154048, 4.740173888320993, 5.291666276110636, 5.984408332162412, 6.452043845696772, 6.785311432966563, 7.744963111966630, 8.345209607147577, 8.999499320603777, 9.566832397593153, 10.24618270219260, 10.77666910539994, 11.48273863973369, 11.93342113904611, 12.47648635038659, 12.88268381343334, 13.53248828748555, 13.87032803173071, 14.16131652726989, 15.14361816389971, 15.33940689632482

Graph of the $Z$-function along the critical line