Properties

Label 27225.bx
Number of curves $3$
Conductor $27225$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27225.bx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27225.bx do not have complex multiplication.

Modular form 27225.2.a.bx

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} - 2 q^{7} + 4 q^{13} - 4 q^{14} - 4 q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 27225.bx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27225.bx1 27225bq3 \([0, 0, 1, -212908575, -1195742989719]\) \(-52893159101157376/11\) \(-221971057171875\) \([]\) \(2520000\) \(3.0497\)  
27225.bx2 27225bq2 \([0, 0, 1, -281325, -104025969]\) \(-122023936/161051\) \(-3249878248053421875\) \([]\) \(504000\) \(2.2450\)  
27225.bx3 27225bq1 \([0, 0, 1, -9075, 790281]\) \(-4096/11\) \(-221971057171875\) \([]\) \(100800\) \(1.4402\) \(\Gamma_0(N)\)-optimal