Properties

Label 2-27200-1.1-c1-0-6
Degree $2$
Conductor $27200$
Sign $1$
Analytic cond. $217.193$
Root an. cond. $14.7374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s − 4·11-s + 7·13-s − 17-s − 6·19-s + 21-s + 8·23-s + 5·27-s − 7·31-s + 4·33-s − 8·37-s − 7·39-s − 6·41-s − 4·43-s + 6·47-s − 6·49-s + 51-s + 3·53-s + 6·57-s − 12·59-s + 14·61-s + 2·63-s − 8·67-s − 8·69-s − 9·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s − 1.20·11-s + 1.94·13-s − 0.242·17-s − 1.37·19-s + 0.218·21-s + 1.66·23-s + 0.962·27-s − 1.25·31-s + 0.696·33-s − 1.31·37-s − 1.12·39-s − 0.937·41-s − 0.609·43-s + 0.875·47-s − 6/7·49-s + 0.140·51-s + 0.412·53-s + 0.794·57-s − 1.56·59-s + 1.79·61-s + 0.251·63-s − 0.977·67-s − 0.963·69-s − 1.06·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27200\)    =    \(2^{6} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(217.193\)
Root analytic conductor: \(14.7374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7399016440\)
\(L(\frac12)\) \(\approx\) \(0.7399016440\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.45159000413068, −14.81981135175970, −14.16831929090625, −13.42103728092114, −13.15531352745540, −12.73899799081231, −12.03034750038923, −11.27570669407989, −10.93740296413240, −10.61380438044054, −10.05349895157459, −8.963017073087170, −8.707954157822306, −8.350308508411971, −7.384027935652538, −6.823708724566908, −6.185519142610234, −5.766037932882156, −5.133171397479975, −4.554631499831758, −3.516429243062097, −3.216086709491080, −2.279824469446508, −1.415700907544100, −0.3513578601424908, 0.3513578601424908, 1.415700907544100, 2.279824469446508, 3.216086709491080, 3.516429243062097, 4.554631499831758, 5.133171397479975, 5.766037932882156, 6.185519142610234, 6.823708724566908, 7.384027935652538, 8.350308508411971, 8.707954157822306, 8.963017073087170, 10.05349895157459, 10.61380438044054, 10.93740296413240, 11.27570669407989, 12.03034750038923, 12.73899799081231, 13.15531352745540, 13.42103728092114, 14.16831929090625, 14.81981135175970, 15.45159000413068

Graph of the $Z$-function along the critical line