Properties

Label 2-27200-1.1-c1-0-45
Degree $2$
Conductor $27200$
Sign $-1$
Analytic cond. $217.193$
Root an. cond. $14.7374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·7-s + 9-s + 2·13-s − 17-s − 4·21-s − 2·23-s + 4·27-s − 6·29-s − 8·31-s + 10·37-s − 4·39-s − 2·41-s + 2·43-s + 6·47-s − 3·49-s + 2·51-s + 2·53-s + 8·59-s − 2·61-s + 2·63-s − 2·67-s + 4·69-s + 8·71-s − 2·73-s − 4·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.755·7-s + 1/3·9-s + 0.554·13-s − 0.242·17-s − 0.872·21-s − 0.417·23-s + 0.769·27-s − 1.11·29-s − 1.43·31-s + 1.64·37-s − 0.640·39-s − 0.312·41-s + 0.304·43-s + 0.875·47-s − 3/7·49-s + 0.280·51-s + 0.274·53-s + 1.04·59-s − 0.256·61-s + 0.251·63-s − 0.244·67-s + 0.481·69-s + 0.949·71-s − 0.234·73-s − 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27200\)    =    \(2^{6} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(217.193\)
Root analytic conductor: \(14.7374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.67511090119334, −14.81132001591030, −14.68171806815042, −13.90635933118725, −13.33505420586032, −12.72572864029031, −12.31239551129244, −11.49360866845511, −11.28319708971285, −10.93335250188065, −10.27275573662873, −9.605131828000078, −8.958548454023538, −8.388104609497318, −7.736325109379403, −7.166888260313983, −6.509510194304795, −5.712599857704046, −5.640832254501317, −4.800529397136681, −4.207627662288105, −3.560673471165628, −2.532516420109014, −1.749008857743803, −0.9435516195299060, 0, 0.9435516195299060, 1.749008857743803, 2.532516420109014, 3.560673471165628, 4.207627662288105, 4.800529397136681, 5.640832254501317, 5.712599857704046, 6.509510194304795, 7.166888260313983, 7.736325109379403, 8.388104609497318, 8.958548454023538, 9.605131828000078, 10.27275573662873, 10.93335250188065, 11.28319708971285, 11.49360866845511, 12.31239551129244, 12.72572864029031, 13.33505420586032, 13.90635933118725, 14.68171806815042, 14.81132001591030, 15.67511090119334

Graph of the $Z$-function along the critical line