Properties

Label 2-27200-1.1-c1-0-67
Degree $2$
Conductor $27200$
Sign $-1$
Analytic cond. $217.193$
Root an. cond. $14.7374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5·7-s − 2·9-s − 4·11-s + 3·13-s − 17-s + 2·19-s + 5·21-s + 8·23-s − 5·27-s − 5·31-s − 4·33-s − 12·37-s + 3·39-s − 10·41-s − 4·43-s + 2·47-s + 18·49-s − 51-s − 53-s + 2·57-s − 2·61-s − 10·63-s + 8·67-s + 8·69-s + 5·71-s − 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.88·7-s − 2/3·9-s − 1.20·11-s + 0.832·13-s − 0.242·17-s + 0.458·19-s + 1.09·21-s + 1.66·23-s − 0.962·27-s − 0.898·31-s − 0.696·33-s − 1.97·37-s + 0.480·39-s − 1.56·41-s − 0.609·43-s + 0.291·47-s + 18/7·49-s − 0.140·51-s − 0.137·53-s + 0.264·57-s − 0.256·61-s − 1.25·63-s + 0.977·67-s + 0.963·69-s + 0.593·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27200\)    =    \(2^{6} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(217.193\)
Root analytic conductor: \(14.7374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.32238095167044, −15.11275366508723, −14.27072676432229, −14.13334586167285, −13.44529257835946, −13.08702893679859, −12.28196995983180, −11.54350335029729, −11.27263878693905, −10.72451372611188, −10.32654545411398, −9.340896517097435, −8.733860036548224, −8.358533467351498, −8.084586107382808, −7.231845152003068, −6.908316135773178, −5.622477793993295, −5.348677131240588, −4.913193485846138, −4.041529536772330, −3.257604215963050, −2.698900623277370, −1.826203940179685, −1.325042110166912, 0, 1.325042110166912, 1.826203940179685, 2.698900623277370, 3.257604215963050, 4.041529536772330, 4.913193485846138, 5.348677131240588, 5.622477793993295, 6.908316135773178, 7.231845152003068, 8.084586107382808, 8.358533467351498, 8.733860036548224, 9.340896517097435, 10.32654545411398, 10.72451372611188, 11.27263878693905, 11.54350335029729, 12.28196995983180, 13.08702893679859, 13.44529257835946, 14.13334586167285, 14.27072676432229, 15.11275366508723, 15.32238095167044

Graph of the $Z$-function along the critical line