Properties

Label 2-26862-1.1-c1-0-18
Degree $2$
Conductor $26862$
Sign $-1$
Analytic cond. $214.494$
Root an. cond. $14.6456$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 2·5-s − 6-s + 4·7-s − 8-s + 9-s − 2·10-s + 12-s − 4·13-s − 4·14-s + 2·15-s + 16-s − 2·17-s − 18-s − 8·19-s + 2·20-s + 4·21-s + 4·23-s − 24-s − 25-s + 4·26-s + 27-s + 4·28-s + 6·29-s − 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.288·12-s − 1.10·13-s − 1.06·14-s + 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 1.83·19-s + 0.447·20-s + 0.872·21-s + 0.834·23-s − 0.204·24-s − 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.755·28-s + 1.11·29-s − 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26862\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(214.494\)
Root analytic conductor: \(14.6456\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 26862,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.27034604675144, −14.98405920402886, −14.61549664255908, −14.09641620643793, −13.37263329004946, −13.05393970695288, −12.17989905809802, −11.77667838926387, −11.07679013243659, −10.48130903256606, −10.19384902618826, −9.474021389513126, −8.924202734613642, −8.379547661940849, −8.074505138569559, −7.321384104905015, −6.714012078424000, −6.208419010019643, −5.241566130612206, −4.778108936626248, −4.231855259438438, −3.077571413329011, −2.342437951091705, −1.914066493433279, −1.324395240849465, 0, 1.324395240849465, 1.914066493433279, 2.342437951091705, 3.077571413329011, 4.231855259438438, 4.778108936626248, 5.241566130612206, 6.208419010019643, 6.714012078424000, 7.321384104905015, 8.074505138569559, 8.379547661940849, 8.924202734613642, 9.474021389513126, 10.19384902618826, 10.48130903256606, 11.07679013243659, 11.77667838926387, 12.17989905809802, 13.05393970695288, 13.37263329004946, 14.09641620643793, 14.61549664255908, 14.98405920402886, 15.27034604675144

Graph of the $Z$-function along the critical line