Properties

Label 2-266400-1.1-c1-0-122
Degree $2$
Conductor $266400$
Sign $-1$
Analytic cond. $2127.21$
Root an. cond. $46.1217$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 5·11-s + 4·13-s + 3·17-s − 4·19-s + 4·23-s − 3·29-s − 7·31-s + 37-s + 9·41-s + 5·43-s + 12·47-s + 2·49-s + 7·53-s + 8·59-s + 3·61-s − 8·67-s + 6·71-s − 10·73-s − 15·77-s + 8·79-s + 12·83-s + 12·89-s − 12·91-s − 13·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.13·7-s + 1.50·11-s + 1.10·13-s + 0.727·17-s − 0.917·19-s + 0.834·23-s − 0.557·29-s − 1.25·31-s + 0.164·37-s + 1.40·41-s + 0.762·43-s + 1.75·47-s + 2/7·49-s + 0.961·53-s + 1.04·59-s + 0.384·61-s − 0.977·67-s + 0.712·71-s − 1.17·73-s − 1.70·77-s + 0.900·79-s + 1.31·83-s + 1.27·89-s − 1.25·91-s − 1.31·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266400\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(2127.21\)
Root analytic conductor: \(46.1217\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 266400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 7 T + p T^{2} \) 1.31.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00624808913720, −12.62156339471994, −12.16035790089624, −11.66198397070863, −11.17819938642899, −10.63675445494582, −10.43282587836621, −9.615684129424357, −9.217533403042715, −8.998989039380431, −8.603669924706068, −7.754856555221065, −7.388135868715974, −6.757620145702976, −6.470487043735775, −5.848676423488366, −5.700195060083493, −4.853126757733888, −4.020844392714566, −3.805943720886557, −3.511892249546908, −2.639941016250958, −2.186689525429908, −1.177192631702949, −0.9943438542850082, 0, 0.9943438542850082, 1.177192631702949, 2.186689525429908, 2.639941016250958, 3.511892249546908, 3.805943720886557, 4.020844392714566, 4.853126757733888, 5.700195060083493, 5.848676423488366, 6.470487043735775, 6.757620145702976, 7.388135868715974, 7.754856555221065, 8.603669924706068, 8.998989039380431, 9.217533403042715, 9.615684129424357, 10.43282587836621, 10.63675445494582, 11.17819938642899, 11.66198397070863, 12.16035790089624, 12.62156339471994, 13.00624808913720

Graph of the $Z$-function along the critical line