| L(s)  = 1  |   + 2-s     − 4-s       + 7-s   − 3·8-s       − 6·11-s       + 14-s     − 16-s       − 2·19-s       − 6·22-s             − 28-s   − 6·29-s     + 2·31-s   + 5·32-s           + 8·37-s   − 2·38-s       − 2·41-s     + 8·43-s   + 6·44-s       + 4·47-s     + 49-s         + 6·53-s       − 3·56-s     − 6·58-s       + 6·61-s   + 2·62-s     + 7·64-s       − 8·67-s  + ⋯ | 
 
| L(s)  = 1  |   + 0.707·2-s     − 1/2·4-s       + 0.377·7-s   − 1.06·8-s       − 1.80·11-s       + 0.267·14-s     − 1/4·16-s       − 0.458·19-s       − 1.27·22-s             − 0.188·28-s   − 1.11·29-s     + 0.359·31-s   + 0.883·32-s           + 1.31·37-s   − 0.324·38-s       − 0.312·41-s     + 1.21·43-s   + 0.904·44-s       + 0.583·47-s     + 1/7·49-s         + 0.824·53-s       − 0.400·56-s     − 0.787·58-s       + 0.768·61-s   + 0.254·62-s     + 7/8·64-s       − 0.977·67-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(1.822405805\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.822405805\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 7 |  \( 1 - T \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 2 |  \( 1 - T + p T^{2} \)  |  1.2.ab  | 
 | 11 |  \( 1 + 6 T + p T^{2} \)  |  1.11.g  | 
 | 17 |  \( 1 + p T^{2} \)  |  1.17.a  | 
 | 19 |  \( 1 + 2 T + p T^{2} \)  |  1.19.c  | 
 | 23 |  \( 1 + p T^{2} \)  |  1.23.a  | 
 | 29 |  \( 1 + 6 T + p T^{2} \)  |  1.29.g  | 
 | 31 |  \( 1 - 2 T + p T^{2} \)  |  1.31.ac  | 
 | 37 |  \( 1 - 8 T + p T^{2} \)  |  1.37.ai  | 
 | 41 |  \( 1 + 2 T + p T^{2} \)  |  1.41.c  | 
 | 43 |  \( 1 - 8 T + p T^{2} \)  |  1.43.ai  | 
 | 47 |  \( 1 - 4 T + p T^{2} \)  |  1.47.ae  | 
 | 53 |  \( 1 - 6 T + p T^{2} \)  |  1.53.ag  | 
 | 59 |  \( 1 + p T^{2} \)  |  1.59.a  | 
 | 61 |  \( 1 - 6 T + p T^{2} \)  |  1.61.ag  | 
 | 67 |  \( 1 + 8 T + p T^{2} \)  |  1.67.i  | 
 | 71 |  \( 1 + 14 T + p T^{2} \)  |  1.71.o  | 
 | 73 |  \( 1 - 14 T + p T^{2} \)  |  1.73.ao  | 
 | 79 |  \( 1 - 12 T + p T^{2} \)  |  1.79.am  | 
 | 83 |  \( 1 - 12 T + p T^{2} \)  |  1.83.am  | 
 | 89 |  \( 1 - 10 T + p T^{2} \)  |  1.89.ak  | 
 | 97 |  \( 1 - 2 T + p T^{2} \)  |  1.97.ac  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.95694516860674, −12.36523891460884, −12.11384095421735, −11.43705539541126, −10.92576206107609, −10.61387933465316, −10.03584349373437, −9.602944174379397, −9.004621031742368, −8.655757959549391, −8.035064521079281, −7.662278340805987, −7.325142084400685, −6.402249522667036, −6.036636615516293, −5.501141728749685, −5.091522725793627, −4.725734713175124, −4.076587871875765, −3.712793721978571, −2.951269803435960, −2.477981471223433, −2.073290895304537, −0.9832254729085333, −0.3716438696648349, 
0.3716438696648349, 0.9832254729085333, 2.073290895304537, 2.477981471223433, 2.951269803435960, 3.712793721978571, 4.076587871875765, 4.725734713175124, 5.091522725793627, 5.501141728749685, 6.036636615516293, 6.402249522667036, 7.325142084400685, 7.662278340805987, 8.035064521079281, 8.655757959549391, 9.004621031742368, 9.602944174379397, 10.03584349373437, 10.61387933465316, 10.92576206107609, 11.43705539541126, 12.11384095421735, 12.36523891460884, 12.95694516860674