Properties

Label 2-266175-1.1-c1-0-22
Degree $2$
Conductor $266175$
Sign $1$
Analytic cond. $2125.41$
Root an. cond. $46.1022$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 7-s − 3·8-s − 6·11-s + 14-s − 16-s − 2·19-s − 6·22-s − 28-s − 6·29-s + 2·31-s + 5·32-s + 8·37-s − 2·38-s − 2·41-s + 8·43-s + 6·44-s + 4·47-s + 49-s + 6·53-s − 3·56-s − 6·58-s + 6·61-s + 2·62-s + 7·64-s − 8·67-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.377·7-s − 1.06·8-s − 1.80·11-s + 0.267·14-s − 1/4·16-s − 0.458·19-s − 1.27·22-s − 0.188·28-s − 1.11·29-s + 0.359·31-s + 0.883·32-s + 1.31·37-s − 0.324·38-s − 0.312·41-s + 1.21·43-s + 0.904·44-s + 0.583·47-s + 1/7·49-s + 0.824·53-s − 0.400·56-s − 0.787·58-s + 0.768·61-s + 0.254·62-s + 7/8·64-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266175\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2125.41\)
Root analytic conductor: \(46.1022\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 266175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.822405805\)
\(L(\frac12)\) \(\approx\) \(1.822405805\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95694516860674, −12.36523891460884, −12.11384095421735, −11.43705539541126, −10.92576206107609, −10.61387933465316, −10.03584349373437, −9.602944174379397, −9.004621031742368, −8.655757959549391, −8.035064521079281, −7.662278340805987, −7.325142084400685, −6.402249522667036, −6.036636615516293, −5.501141728749685, −5.091522725793627, −4.725734713175124, −4.076587871875765, −3.712793721978571, −2.951269803435960, −2.477981471223433, −2.073290895304537, −0.9832254729085333, −0.3716438696648349, 0.3716438696648349, 0.9832254729085333, 2.073290895304537, 2.477981471223433, 2.951269803435960, 3.712793721978571, 4.076587871875765, 4.725734713175124, 5.091522725793627, 5.501141728749685, 6.036636615516293, 6.402249522667036, 7.325142084400685, 7.662278340805987, 8.035064521079281, 8.655757959549391, 9.004621031742368, 9.602944174379397, 10.03584349373437, 10.61387933465316, 10.92576206107609, 11.43705539541126, 12.11384095421735, 12.36523891460884, 12.95694516860674

Graph of the $Z$-function along the critical line