Properties

Label 2-262080-1.1-c1-0-284
Degree $2$
Conductor $262080$
Sign $-1$
Analytic cond. $2092.71$
Root an. cond. $45.7462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 13-s + 6·17-s − 4·23-s + 25-s − 2·29-s + 4·31-s + 35-s + 10·37-s − 2·41-s − 8·43-s + 49-s − 2·53-s + 2·61-s − 65-s − 4·67-s + 12·71-s − 6·73-s − 8·79-s − 4·83-s + 6·85-s − 2·89-s − 91-s − 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 0.277·13-s + 1.45·17-s − 0.834·23-s + 1/5·25-s − 0.371·29-s + 0.718·31-s + 0.169·35-s + 1.64·37-s − 0.312·41-s − 1.21·43-s + 1/7·49-s − 0.274·53-s + 0.256·61-s − 0.124·65-s − 0.488·67-s + 1.42·71-s − 0.702·73-s − 0.900·79-s − 0.439·83-s + 0.650·85-s − 0.211·89-s − 0.104·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(262080\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2092.71\)
Root analytic conductor: \(45.7462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 262080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99607806488588, −12.62051360921243, −12.00482570186643, −11.76722792117928, −11.24960744377032, −10.70286263555995, −10.10280275788888, −9.894809570495536, −9.471831550791035, −8.876729213837648, −8.206123638509486, −7.986573296661607, −7.507809290197172, −6.894476565564966, −6.340474543266306, −5.928613288145185, −5.300213180657667, −5.091139646320701, −4.237569675241896, −3.964176215484576, −3.091165881875833, −2.778695039267752, −2.022645746867776, −1.463568736457600, −0.9069559459831621, 0, 0.9069559459831621, 1.463568736457600, 2.022645746867776, 2.778695039267752, 3.091165881875833, 3.964176215484576, 4.237569675241896, 5.091139646320701, 5.300213180657667, 5.928613288145185, 6.340474543266306, 6.894476565564966, 7.507809290197172, 7.986573296661607, 8.206123638509486, 8.876729213837648, 9.471831550791035, 9.894809570495536, 10.10280275788888, 10.70286263555995, 11.24960744377032, 11.76722792117928, 12.00482570186643, 12.62051360921243, 12.99607806488588

Graph of the $Z$-function along the critical line