Properties

Label 2-262080-1.1-c1-0-96
Degree $2$
Conductor $262080$
Sign $1$
Analytic cond. $2092.71$
Root an. cond. $45.7462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 13-s − 2·17-s + 4·19-s + 8·23-s + 25-s − 6·29-s − 4·31-s + 35-s + 6·37-s + 10·41-s + 12·47-s + 49-s − 2·53-s − 4·59-s − 10·61-s − 65-s + 8·67-s + 8·71-s + 6·73-s + 4·83-s + 2·85-s − 6·89-s − 91-s − 4·95-s + 6·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.277·13-s − 0.485·17-s + 0.917·19-s + 1.66·23-s + 1/5·25-s − 1.11·29-s − 0.718·31-s + 0.169·35-s + 0.986·37-s + 1.56·41-s + 1.75·47-s + 1/7·49-s − 0.274·53-s − 0.520·59-s − 1.28·61-s − 0.124·65-s + 0.977·67-s + 0.949·71-s + 0.702·73-s + 0.439·83-s + 0.216·85-s − 0.635·89-s − 0.104·91-s − 0.410·95-s + 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(262080\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(2092.71\)
Root analytic conductor: \(45.7462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 262080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.665225834\)
\(L(\frac12)\) \(\approx\) \(2.665225834\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72636158624074, −12.47082862915055, −11.91882982019099, −11.20095760817695, −11.04289981083362, −10.77085418480963, −9.965052356407812, −9.332825190447153, −9.244743991404159, −8.768251420422747, −8.012524602593961, −7.618122366756214, −7.189597911702113, −6.800555016946797, −6.081241970501201, −5.711758713257755, −5.144888412640520, −4.592285321213184, −4.032554090852144, −3.552290668045575, −2.995477217852656, −2.505130436009662, −1.776578154717281, −0.9469892251510286, −0.5421269514941223, 0.5421269514941223, 0.9469892251510286, 1.776578154717281, 2.505130436009662, 2.995477217852656, 3.552290668045575, 4.032554090852144, 4.592285321213184, 5.144888412640520, 5.711758713257755, 6.081241970501201, 6.800555016946797, 7.189597911702113, 7.618122366756214, 8.012524602593961, 8.768251420422747, 9.244743991404159, 9.332825190447153, 9.965052356407812, 10.77085418480963, 11.04289981083362, 11.20095760817695, 11.91882982019099, 12.47082862915055, 12.72636158624074

Graph of the $Z$-function along the critical line