Properties

Label 2-259920-1.1-c1-0-69
Degree $2$
Conductor $259920$
Sign $-1$
Analytic cond. $2075.47$
Root an. cond. $45.5573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 6·11-s − 2·17-s + 4·23-s + 25-s − 8·29-s − 8·31-s − 2·35-s + 4·37-s − 4·41-s + 6·43-s − 12·47-s − 3·49-s + 6·53-s − 6·55-s + 4·59-s + 2·61-s − 8·67-s + 6·73-s + 12·77-s + 8·79-s + 4·83-s − 2·85-s − 4·89-s − 12·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 1.80·11-s − 0.485·17-s + 0.834·23-s + 1/5·25-s − 1.48·29-s − 1.43·31-s − 0.338·35-s + 0.657·37-s − 0.624·41-s + 0.914·43-s − 1.75·47-s − 3/7·49-s + 0.824·53-s − 0.809·55-s + 0.520·59-s + 0.256·61-s − 0.977·67-s + 0.702·73-s + 1.36·77-s + 0.900·79-s + 0.439·83-s − 0.216·85-s − 0.423·89-s − 1.21·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 259920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(259920\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2075.47\)
Root analytic conductor: \(45.5573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 259920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06491097956793, −12.81713607802116, −12.34010897398294, −11.49210498810547, −11.11325462462628, −10.81034521407415, −10.22072113089780, −9.835094250185401, −9.383380586838324, −8.954152863386048, −8.391410687150889, −7.880292836317569, −7.263503905490880, −7.112175421224633, −6.323873639921828, −5.889692866972130, −5.411588580277621, −4.982994149328783, −4.494178854590939, −3.528523601078673, −3.383671581576343, −2.580973820695841, −2.215610596653915, −1.593164962990099, −0.5891656346847220, 0, 0.5891656346847220, 1.593164962990099, 2.215610596653915, 2.580973820695841, 3.383671581576343, 3.528523601078673, 4.494178854590939, 4.982994149328783, 5.411588580277621, 5.889692866972130, 6.323873639921828, 7.112175421224633, 7.263503905490880, 7.880292836317569, 8.391410687150889, 8.954152863386048, 9.383380586838324, 9.835094250185401, 10.22072113089780, 10.81034521407415, 11.11325462462628, 11.49210498810547, 12.34010897398294, 12.81713607802116, 13.06491097956793

Graph of the $Z$-function along the critical line