Properties

Label 2-25992-1.1-c1-0-23
Degree $2$
Conductor $25992$
Sign $-1$
Analytic cond. $207.547$
Root an. cond. $14.4064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·11-s + 2·13-s + 4·17-s + 2·23-s − 5·25-s − 6·29-s − 4·31-s − 2·37-s + 2·41-s + 4·43-s + 10·47-s − 7·49-s − 6·53-s − 4·59-s + 2·61-s − 4·67-s − 4·71-s − 6·73-s − 8·79-s − 2·83-s − 6·89-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.603·11-s + 0.554·13-s + 0.970·17-s + 0.417·23-s − 25-s − 1.11·29-s − 0.718·31-s − 0.328·37-s + 0.312·41-s + 0.609·43-s + 1.45·47-s − 49-s − 0.824·53-s − 0.520·59-s + 0.256·61-s − 0.488·67-s − 0.474·71-s − 0.702·73-s − 0.900·79-s − 0.219·83-s − 0.635·89-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25992\)    =    \(2^{3} \cdot 3^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(207.547\)
Root analytic conductor: \(14.4064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25992,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.60072124060011, −15.04249573825473, −14.37723819769271, −14.17340646308792, −13.39960040240011, −12.93780685735055, −12.37401858156381, −11.77639778853399, −11.31687780031545, −10.73992528598867, −10.17770660398802, −9.427760629270739, −9.156653130902684, −8.460006442390492, −7.710436260104582, −7.383077797725848, −6.625723682867745, −5.844146493765576, −5.632210402501585, −4.711340650105094, −3.949706069482124, −3.530642353115742, −2.729165311544100, −1.759460917007888, −1.175272431013511, 0, 1.175272431013511, 1.759460917007888, 2.729165311544100, 3.530642353115742, 3.949706069482124, 4.711340650105094, 5.632210402501585, 5.844146493765576, 6.625723682867745, 7.383077797725848, 7.710436260104582, 8.460006442390492, 9.156653130902684, 9.427760629270739, 10.17770660398802, 10.73992528598867, 11.31687780031545, 11.77639778853399, 12.37401858156381, 12.93780685735055, 13.39960040240011, 14.17340646308792, 14.37723819769271, 15.04249573825473, 15.60072124060011

Graph of the $Z$-function along the critical line