Properties

Label 2-257754-1.1-c1-0-55
Degree $2$
Conductor $257754$
Sign $-1$
Analytic cond. $2058.17$
Root an. cond. $45.3671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s + 7-s − 8-s + 9-s + 2·10-s + 4·11-s + 12-s + 2·13-s − 14-s − 2·15-s + 16-s + 17-s − 18-s − 2·20-s + 21-s − 4·22-s + 8·23-s − 24-s − 25-s − 2·26-s + 27-s + 28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 1.20·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s − 0.516·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.447·20-s + 0.218·21-s − 0.852·22-s + 1.66·23-s − 0.204·24-s − 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257754 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257754 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(257754\)    =    \(2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2058.17\)
Root analytic conductor: \(45.3671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 257754,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00443947318292, −12.56861059462836, −11.96606146798970, −11.49278790297532, −11.30035308448134, −10.87149963100034, −10.18630651791194, −9.669234294893351, −9.318683255993735, −8.692426839557266, −8.533773459172315, −7.979268379736055, −7.527445647679369, −6.989595566525962, −6.699110282270199, −6.111137050514414, −5.301005451892125, −4.941730042596068, −4.060498117690828, −3.788536537843539, −3.323764248575686, −2.708586853665008, −1.902272053492914, −1.399196732026127, −0.8883123608397671, 0, 0.8883123608397671, 1.399196732026127, 1.902272053492914, 2.708586853665008, 3.323764248575686, 3.788536537843539, 4.060498117690828, 4.941730042596068, 5.301005451892125, 6.111137050514414, 6.699110282270199, 6.989595566525962, 7.527445647679369, 7.979268379736055, 8.533773459172315, 8.692426839557266, 9.318683255993735, 9.669234294893351, 10.18630651791194, 10.87149963100034, 11.30035308448134, 11.49278790297532, 11.96606146798970, 12.56861059462836, 13.00443947318292

Graph of the $Z$-function along the critical line