Properties

Label 2-25392-1.1-c1-0-19
Degree $2$
Conductor $25392$
Sign $-1$
Analytic cond. $202.756$
Root an. cond. $14.2392$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 7-s + 9-s − 6·11-s − 7·13-s − 2·15-s + 2·17-s + 21-s − 25-s + 27-s + 10·29-s + 8·31-s − 6·33-s − 2·35-s + 7·37-s − 7·39-s + 9·43-s − 2·45-s − 8·47-s − 6·49-s + 2·51-s + 2·53-s + 12·55-s + 4·59-s + 7·61-s + 63-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 0.377·7-s + 1/3·9-s − 1.80·11-s − 1.94·13-s − 0.516·15-s + 0.485·17-s + 0.218·21-s − 1/5·25-s + 0.192·27-s + 1.85·29-s + 1.43·31-s − 1.04·33-s − 0.338·35-s + 1.15·37-s − 1.12·39-s + 1.37·43-s − 0.298·45-s − 1.16·47-s − 6/7·49-s + 0.280·51-s + 0.274·53-s + 1.61·55-s + 0.520·59-s + 0.896·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25392\)    =    \(2^{4} \cdot 3 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(202.756\)
Root analytic conductor: \(14.2392\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25392,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.59471792931394, −15.02900559612742, −14.64246647656146, −14.13162292878807, −13.48601629002874, −12.83114853700985, −12.49789853099641, −11.74439030834140, −11.55066658458697, −10.52651884897407, −10.10429657110346, −9.837764224972983, −8.908615026233894, −8.166201121454905, −7.866979800668905, −7.563122217736854, −6.887643539407144, −6.014452522899214, −5.139526773700628, −4.704896292130450, −4.288027038460561, −3.169722459520381, −2.693459640862498, −2.244586791113931, −0.9196795965710561, 0, 0.9196795965710561, 2.244586791113931, 2.693459640862498, 3.169722459520381, 4.288027038460561, 4.704896292130450, 5.139526773700628, 6.014452522899214, 6.887643539407144, 7.563122217736854, 7.866979800668905, 8.166201121454905, 8.908615026233894, 9.837764224972983, 10.10429657110346, 10.52651884897407, 11.55066658458697, 11.74439030834140, 12.49789853099641, 12.83114853700985, 13.48601629002874, 14.13162292878807, 14.64246647656146, 15.02900559612742, 15.59471792931394

Graph of the $Z$-function along the critical line