Properties

Label 2-25168-1.1-c1-0-20
Degree $2$
Conductor $25168$
Sign $-1$
Analytic cond. $200.967$
Root an. cond. $14.1763$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 3·9-s + 13-s − 2·17-s + 6·19-s − 3·23-s − 4·25-s − 3·29-s + 2·31-s + 35-s + 6·37-s − 3·41-s + 7·43-s + 3·45-s − 6·49-s − 4·53-s − 3·59-s + 61-s + 3·63-s − 65-s + 13·67-s + 10·71-s + 11·73-s − 8·79-s + 9·81-s + 4·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 9-s + 0.277·13-s − 0.485·17-s + 1.37·19-s − 0.625·23-s − 4/5·25-s − 0.557·29-s + 0.359·31-s + 0.169·35-s + 0.986·37-s − 0.468·41-s + 1.06·43-s + 0.447·45-s − 6/7·49-s − 0.549·53-s − 0.390·59-s + 0.128·61-s + 0.377·63-s − 0.124·65-s + 1.58·67-s + 1.18·71-s + 1.28·73-s − 0.900·79-s + 81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25168\)    =    \(2^{4} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(200.967\)
Root analytic conductor: \(14.1763\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25168,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.64458931106128, −15.27358410116205, −14.35789101986217, −14.11563123127527, −13.56998121937036, −12.93634251693162, −12.36333402071733, −11.75723438782620, −11.29012621022751, −11.00766441386022, −10.07548374846253, −9.516803745416343, −9.188791867051806, −8.196918184807736, −8.072110361939350, −7.322286215934008, −6.610756699609305, −5.998387241604915, −5.505865931636426, −4.793609428648859, −3.954103341259018, −3.449499941228501, −2.759685333117720, −2.012175832317286, −0.8946801993502631, 0, 0.8946801993502631, 2.012175832317286, 2.759685333117720, 3.449499941228501, 3.954103341259018, 4.793609428648859, 5.505865931636426, 5.998387241604915, 6.610756699609305, 7.322286215934008, 8.072110361939350, 8.196918184807736, 9.188791867051806, 9.516803745416343, 10.07548374846253, 11.00766441386022, 11.29012621022751, 11.75723438782620, 12.36333402071733, 12.93634251693162, 13.56998121937036, 14.11563123127527, 14.35789101986217, 15.27358410116205, 15.64458931106128

Graph of the $Z$-function along the critical line