Properties

Label 2-24832-1.1-c1-0-2
Degree $2$
Conductor $24832$
Sign $1$
Analytic cond. $198.284$
Root an. cond. $14.0813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s − 2·11-s − 2·13-s + 4·15-s − 2·17-s + 4·19-s − 8·23-s − 25-s + 4·27-s + 2·29-s + 4·33-s − 6·37-s + 4·39-s + 6·41-s − 6·43-s − 2·45-s − 8·47-s − 7·49-s + 4·51-s + 8·53-s + 4·55-s − 8·57-s − 4·59-s − 4·61-s + 4·65-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s − 0.603·11-s − 0.554·13-s + 1.03·15-s − 0.485·17-s + 0.917·19-s − 1.66·23-s − 1/5·25-s + 0.769·27-s + 0.371·29-s + 0.696·33-s − 0.986·37-s + 0.640·39-s + 0.937·41-s − 0.914·43-s − 0.298·45-s − 1.16·47-s − 49-s + 0.560·51-s + 1.09·53-s + 0.539·55-s − 1.05·57-s − 0.520·59-s − 0.512·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24832\)    =    \(2^{8} \cdot 97\)
Sign: $1$
Analytic conductor: \(198.284\)
Root analytic conductor: \(14.0813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 24832,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
97 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.04392327465985, −15.67743522342928, −14.84159481456620, −14.43929436125819, −13.64767446952736, −13.22882842797644, −12.38489321338914, −11.95689564786298, −11.77339289893362, −11.13417866216599, −10.56016669296268, −10.07221576995333, −9.489614301736683, −8.642297759090238, −7.982497826854907, −7.660509606533888, −6.882192113908649, −6.353026459537401, −5.661968799539620, −5.129194880613507, −4.576380192179490, −3.886844972576049, −3.137482196070234, −2.306789062159678, −1.300421328017104, 0, 0, 1.300421328017104, 2.306789062159678, 3.137482196070234, 3.886844972576049, 4.576380192179490, 5.129194880613507, 5.661968799539620, 6.353026459537401, 6.882192113908649, 7.660509606533888, 7.982497826854907, 8.642297759090238, 9.489614301736683, 10.07221576995333, 10.56016669296268, 11.13417866216599, 11.77339289893362, 11.95689564786298, 12.38489321338914, 13.22882842797644, 13.64767446952736, 14.43929436125819, 14.84159481456620, 15.67743522342928, 16.04392327465985

Graph of the $Z$-function along the critical line