| L(s)  = 1 | − 2·3-s     − 2·5-s         + 9-s     − 2·11-s     − 2·13-s     + 4·15-s     − 2·17-s     + 4·19-s         − 8·23-s     − 25-s     + 4·27-s     + 2·29-s         + 4·33-s         − 6·37-s     + 4·39-s     + 6·41-s     − 6·43-s     − 2·45-s     − 8·47-s     − 7·49-s     + 4·51-s     + 8·53-s     + 4·55-s     − 8·57-s     − 4·59-s     − 4·61-s         + 4·65-s  + ⋯ | 
| L(s)  = 1 | − 1.15·3-s     − 0.894·5-s         + 1/3·9-s     − 0.603·11-s     − 0.554·13-s     + 1.03·15-s     − 0.485·17-s     + 0.917·19-s         − 1.66·23-s     − 1/5·25-s     + 0.769·27-s     + 0.371·29-s         + 0.696·33-s         − 0.986·37-s     + 0.640·39-s     + 0.937·41-s     − 0.914·43-s     − 0.298·45-s     − 1.16·47-s     − 49-s     + 0.560·51-s     + 1.09·53-s     + 0.539·55-s     − 1.05·57-s     − 0.520·59-s     − 0.512·61-s         + 0.496·65-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 24832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 97 | \( 1 + T \) |  | 
| good | 3 | \( 1 + 2 T + p T^{2} \) | 1.3.c | 
|  | 5 | \( 1 + 2 T + p T^{2} \) | 1.5.c | 
|  | 7 | \( 1 + p T^{2} \) | 1.7.a | 
|  | 11 | \( 1 + 2 T + p T^{2} \) | 1.11.c | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c | 
|  | 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | 
|  | 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 43 | \( 1 + 6 T + p T^{2} \) | 1.43.g | 
|  | 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i | 
|  | 53 | \( 1 - 8 T + p T^{2} \) | 1.53.ai | 
|  | 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e | 
|  | 61 | \( 1 + 4 T + p T^{2} \) | 1.61.e | 
|  | 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai | 
|  | 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m | 
|  | 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g | 
|  | 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i | 
|  | 83 | \( 1 - 16 T + p T^{2} \) | 1.83.aq | 
|  | 89 | \( 1 - 10 T + p T^{2} \) | 1.89.ak | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−16.04392327465985, −15.67743522342928, −14.84159481456620, −14.43929436125819, −13.64767446952736, −13.22882842797644, −12.38489321338914, −11.95689564786298, −11.77339289893362, −11.13417866216599, −10.56016669296268, −10.07221576995333, −9.489614301736683, −8.642297759090238, −7.982497826854907, −7.660509606533888, −6.882192113908649, −6.353026459537401, −5.661968799539620, −5.129194880613507, −4.576380192179490, −3.886844972576049, −3.137482196070234, −2.306789062159678, −1.300421328017104, 0, 0, 
1.300421328017104, 2.306789062159678, 3.137482196070234, 3.886844972576049, 4.576380192179490, 5.129194880613507, 5.661968799539620, 6.353026459537401, 6.882192113908649, 7.660509606533888, 7.982497826854907, 8.642297759090238, 9.489614301736683, 10.07221576995333, 10.56016669296268, 11.13417866216599, 11.77339289893362, 11.95689564786298, 12.38489321338914, 13.22882842797644, 13.64767446952736, 14.43929436125819, 14.84159481456620, 15.67743522342928, 16.04392327465985
