Properties

Label 2-24642-1.1-c1-0-12
Degree $2$
Conductor $24642$
Sign $-1$
Analytic cond. $196.767$
Root an. cond. $14.0273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s − 4·7-s + 8-s − 3·10-s + 6·11-s + 2·13-s − 4·14-s + 16-s − 3·17-s + 2·19-s − 3·20-s + 6·22-s − 6·23-s + 4·25-s + 2·26-s − 4·28-s − 3·29-s + 2·31-s + 32-s − 3·34-s + 12·35-s + 2·38-s − 3·40-s − 3·41-s − 4·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s − 1.51·7-s + 0.353·8-s − 0.948·10-s + 1.80·11-s + 0.554·13-s − 1.06·14-s + 1/4·16-s − 0.727·17-s + 0.458·19-s − 0.670·20-s + 1.27·22-s − 1.25·23-s + 4/5·25-s + 0.392·26-s − 0.755·28-s − 0.557·29-s + 0.359·31-s + 0.176·32-s − 0.514·34-s + 2.02·35-s + 0.324·38-s − 0.474·40-s − 0.468·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24642 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24642 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24642\)    =    \(2 \cdot 3^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(196.767\)
Root analytic conductor: \(14.0273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 24642,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
37 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.53761713806184, −15.30927265487671, −14.61976314178159, −13.90930071925814, −13.61437952495963, −12.92275894692332, −12.22810710784811, −12.08382740205460, −11.43757359295792, −11.08201901386704, −10.16767887757952, −9.679492283331378, −8.994925196271814, −8.524238265966301, −7.732948291438659, −7.082243253216225, −6.585291208179776, −6.226707292619381, −5.498322770666527, −4.441884251086173, −3.908041235389482, −3.690097698569993, −3.053283777268334, −2.045783988570251, −0.9843853402178401, 0, 0.9843853402178401, 2.045783988570251, 3.053283777268334, 3.690097698569993, 3.908041235389482, 4.441884251086173, 5.498322770666527, 6.226707292619381, 6.585291208179776, 7.082243253216225, 7.732948291438659, 8.524238265966301, 8.994925196271814, 9.679492283331378, 10.16767887757952, 11.08201901386704, 11.43757359295792, 12.08382740205460, 12.22810710784811, 12.92275894692332, 13.61437952495963, 13.90930071925814, 14.61976314178159, 15.30927265487671, 15.53761713806184

Graph of the $Z$-function along the critical line