Properties

Label 2-243360-1.1-c1-0-39
Degree $2$
Conductor $243360$
Sign $1$
Analytic cond. $1943.23$
Root an. cond. $44.0821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 4·11-s − 4·17-s + 2·19-s − 8·23-s + 25-s − 2·31-s + 2·35-s + 10·37-s + 10·41-s − 3·49-s − 8·53-s + 4·55-s − 4·59-s + 2·61-s + 2·67-s − 2·73-s + 8·77-s + 12·83-s − 4·85-s + 6·89-s + 2·95-s + 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 1.20·11-s − 0.970·17-s + 0.458·19-s − 1.66·23-s + 1/5·25-s − 0.359·31-s + 0.338·35-s + 1.64·37-s + 1.56·41-s − 3/7·49-s − 1.09·53-s + 0.539·55-s − 0.520·59-s + 0.256·61-s + 0.244·67-s − 0.234·73-s + 0.911·77-s + 1.31·83-s − 0.433·85-s + 0.635·89-s + 0.205·95-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243360\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1943.23\)
Root analytic conductor: \(44.0821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 243360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.586025819\)
\(L(\frac12)\) \(\approx\) \(3.586025819\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07829963900993, −12.23701993546478, −12.01403167787735, −11.41707303182991, −11.08860887576702, −10.71989525561841, −9.918468325245261, −9.650236720598305, −9.145447575868613, −8.787069197563926, −8.125447164146523, −7.705615923557169, −7.330574439193861, −6.445687492900549, −6.278183057709764, −5.850462102382407, −5.100610866087620, −4.586908756732550, −4.176316998592709, −3.689630252401801, −2.948640533216407, −2.199502996817261, −1.879981893681283, −1.207840671950865, −0.5357633358427717, 0.5357633358427717, 1.207840671950865, 1.879981893681283, 2.199502996817261, 2.948640533216407, 3.689630252401801, 4.176316998592709, 4.586908756732550, 5.100610866087620, 5.850462102382407, 6.278183057709764, 6.445687492900549, 7.330574439193861, 7.705615923557169, 8.125447164146523, 8.787069197563926, 9.145447575868613, 9.650236720598305, 9.918468325245261, 10.71989525561841, 11.08860887576702, 11.41707303182991, 12.01403167787735, 12.23701993546478, 13.07829963900993

Graph of the $Z$-function along the critical line