Properties

Label 2-156e2-1.1-c1-0-33
Degree $2$
Conductor $24336$
Sign $-1$
Analytic cond. $194.323$
Root an. cond. $13.9400$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 2·7-s + 6·11-s + 3·17-s − 2·19-s − 6·23-s + 4·25-s − 3·29-s + 4·31-s + 6·35-s − 7·37-s + 3·41-s + 10·43-s + 6·47-s − 3·49-s − 3·53-s − 18·55-s − 7·61-s + 10·67-s + 6·71-s − 13·73-s − 12·77-s + 4·79-s − 6·83-s − 9·85-s − 18·89-s + 6·95-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.755·7-s + 1.80·11-s + 0.727·17-s − 0.458·19-s − 1.25·23-s + 4/5·25-s − 0.557·29-s + 0.718·31-s + 1.01·35-s − 1.15·37-s + 0.468·41-s + 1.52·43-s + 0.875·47-s − 3/7·49-s − 0.412·53-s − 2.42·55-s − 0.896·61-s + 1.22·67-s + 0.712·71-s − 1.52·73-s − 1.36·77-s + 0.450·79-s − 0.658·83-s − 0.976·85-s − 1.90·89-s + 0.615·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24336\)    =    \(2^{4} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(194.323\)
Root analytic conductor: \(13.9400\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 24336,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.66403668578515, −15.27857914853164, −14.51063692148683, −14.19750435838001, −13.66830403637172, −12.69787728741412, −12.32149393015802, −12.01286920565306, −11.41986904745868, −10.92248878615196, −10.15891474035611, −9.578585865323397, −9.087740123570680, −8.438310916700379, −7.899770328466956, −7.263054493315534, −6.742747356652433, −6.136814681952603, −5.575664524194607, −4.407110634971458, −4.076574269388569, −3.593739141275329, −2.924229387735290, −1.832590659004001, −0.9224130541932181, 0, 0.9224130541932181, 1.832590659004001, 2.924229387735290, 3.593739141275329, 4.076574269388569, 4.407110634971458, 5.575664524194607, 6.136814681952603, 6.742747356652433, 7.263054493315534, 7.899770328466956, 8.438310916700379, 9.087740123570680, 9.578585865323397, 10.15891474035611, 10.92248878615196, 11.41986904745868, 12.01286920565306, 12.32149393015802, 12.69787728741412, 13.66830403637172, 14.19750435838001, 14.51063692148683, 15.27857914853164, 15.66403668578515

Graph of the $Z$-function along the critical line