Properties

Label 2-235200-1.1-c1-0-260
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 2·13-s − 6·17-s + 4·23-s + 27-s + 2·29-s + 8·31-s + 6·37-s + 2·39-s + 6·41-s + 12·43-s − 12·47-s − 6·51-s − 10·53-s + 8·59-s − 10·61-s − 12·67-s + 4·69-s + 8·71-s + 10·73-s + 16·79-s + 81-s − 12·83-s + 2·87-s + 6·89-s + 8·93-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.554·13-s − 1.45·17-s + 0.834·23-s + 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.986·37-s + 0.320·39-s + 0.937·41-s + 1.82·43-s − 1.75·47-s − 0.840·51-s − 1.37·53-s + 1.04·59-s − 1.28·61-s − 1.46·67-s + 0.481·69-s + 0.949·71-s + 1.17·73-s + 1.80·79-s + 1/9·81-s − 1.31·83-s + 0.214·87-s + 0.635·89-s + 0.829·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.900451485\)
\(L(\frac12)\) \(\approx\) \(3.900451485\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08449509273666, −12.57292303596105, −12.00035769349762, −11.42553555093653, −11.00306258084539, −10.71518290178592, −10.09335477543089, −9.430715008857295, −9.235698380848821, −8.745123384495195, −8.117054961460144, −7.913088644626407, −7.231043694325293, −6.700542342945368, −6.223052003312187, −5.942006833281602, −4.907944918405787, −4.663829223397616, −4.191105601836482, −3.499621169168143, −2.959038869239825, −2.459819578156191, −1.918235272991480, −1.109885376343515, −0.5714857861629622, 0.5714857861629622, 1.109885376343515, 1.918235272991480, 2.459819578156191, 2.959038869239825, 3.499621169168143, 4.191105601836482, 4.663829223397616, 4.907944918405787, 5.942006833281602, 6.223052003312187, 6.700542342945368, 7.231043694325293, 7.913088644626407, 8.117054961460144, 8.745123384495195, 9.235698380848821, 9.430715008857295, 10.09335477543089, 10.71518290178592, 11.00306258084539, 11.42553555093653, 12.00035769349762, 12.57292303596105, 13.08449509273666

Graph of the $Z$-function along the critical line