Properties

Label 2-23100-1.1-c1-0-10
Degree $2$
Conductor $23100$
Sign $1$
Analytic cond. $184.454$
Root an. cond. $13.5814$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 11-s + 3·13-s + 3·17-s + 5·19-s − 21-s − 4·23-s + 27-s + 8·29-s − 6·31-s − 33-s − 7·37-s + 3·39-s − 5·41-s + 8·43-s + 4·47-s + 49-s + 3·51-s − 53-s + 5·57-s − 4·59-s − 7·61-s − 63-s − 5·67-s − 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.832·13-s + 0.727·17-s + 1.14·19-s − 0.218·21-s − 0.834·23-s + 0.192·27-s + 1.48·29-s − 1.07·31-s − 0.174·33-s − 1.15·37-s + 0.480·39-s − 0.780·41-s + 1.21·43-s + 0.583·47-s + 1/7·49-s + 0.420·51-s − 0.137·53-s + 0.662·57-s − 0.520·59-s − 0.896·61-s − 0.125·63-s − 0.610·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(184.454\)
Root analytic conductor: \(13.5814\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.923256191\)
\(L(\frac12)\) \(\approx\) \(2.923256191\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.56281505420063, −14.98849388109411, −14.16812092157000, −13.85995374383891, −13.58405192030345, −12.67978095021549, −12.30066529252495, −11.82653624103189, −10.96822238013570, −10.49640592047643, −9.942963605460162, −9.377662157573169, −8.823565727866648, −8.231712896303563, −7.658366333096080, −7.157704277168652, −6.385720828749791, −5.802631244344258, −5.166668382646851, −4.409046457088256, −3.479863530603742, −3.325166052494829, −2.377891403813641, −1.546748609678371, −0.6872976415323615, 0.6872976415323615, 1.546748609678371, 2.377891403813641, 3.325166052494829, 3.479863530603742, 4.409046457088256, 5.166668382646851, 5.802631244344258, 6.385720828749791, 7.157704277168652, 7.658366333096080, 8.231712896303563, 8.823565727866648, 9.377662157573169, 9.942963605460162, 10.49640592047643, 10.96822238013570, 11.82653624103189, 12.30066529252495, 12.67978095021549, 13.58405192030345, 13.85995374383891, 14.16812092157000, 14.98849388109411, 15.56281505420063

Graph of the $Z$-function along the critical line