Properties

Label 23100.x
Number of curves $1$
Conductor $23100$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 23100.x1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23100.x do not have complex multiplication.

Modular form 23100.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - q^{11} + 3 q^{13} + 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 23100.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23100.x1 23100bd1 \([0, 1, 0, -147533, -21854337]\) \(2219597331865600/733776813\) \(117404290080000\) \([]\) \(104832\) \(1.6729\) \(\Gamma_0(N)\)-optimal