Properties

Label 2-227136-1.1-c1-0-155
Degree $2$
Conductor $227136$
Sign $1$
Analytic cond. $1813.69$
Root an. cond. $42.5874$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s − 7-s + 9-s + 4·15-s + 2·17-s − 21-s + 4·23-s + 11·25-s + 27-s − 2·29-s + 8·31-s − 4·35-s + 8·37-s + 4·41-s + 8·43-s + 4·45-s + 49-s + 2·51-s − 6·53-s + 8·59-s + 10·61-s − 63-s − 8·67-s + 4·69-s + 4·73-s + 11·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s − 0.377·7-s + 1/3·9-s + 1.03·15-s + 0.485·17-s − 0.218·21-s + 0.834·23-s + 11/5·25-s + 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.676·35-s + 1.31·37-s + 0.624·41-s + 1.21·43-s + 0.596·45-s + 1/7·49-s + 0.280·51-s − 0.824·53-s + 1.04·59-s + 1.28·61-s − 0.125·63-s − 0.977·67-s + 0.481·69-s + 0.468·73-s + 1.27·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 227136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 227136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(227136\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1813.69\)
Root analytic conductor: \(42.5874\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 227136,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.176987436\)
\(L(\frac12)\) \(\approx\) \(7.176987436\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08244300704637, −12.67441011700698, −12.23321947404066, −11.36755600991151, −11.13247433667927, −10.29257904054999, −10.08956464229139, −9.747221179387642, −9.106627556416449, −8.990690086227647, −8.342286505329651, −7.681182813959291, −7.274756761877685, −6.616431872715452, −6.172778495049694, −5.871590295082811, −5.237122919783121, −4.743396775019197, −4.170148936614560, −3.392807709759053, −2.861782901513257, −2.430235299090441, −1.974943134227981, −1.119111659229729, −0.7975815282990905, 0.7975815282990905, 1.119111659229729, 1.974943134227981, 2.430235299090441, 2.861782901513257, 3.392807709759053, 4.170148936614560, 4.743396775019197, 5.237122919783121, 5.871590295082811, 6.172778495049694, 6.616431872715452, 7.274756761877685, 7.681182813959291, 8.342286505329651, 8.990690086227647, 9.106627556416449, 9.747221179387642, 10.08956464229139, 10.29257904054999, 11.13247433667927, 11.36755600991151, 12.23321947404066, 12.67441011700698, 13.08244300704637

Graph of the $Z$-function along the critical line