Properties

Label 2-225420-1.1-c1-0-14
Degree $2$
Conductor $225420$
Sign $1$
Analytic cond. $1799.98$
Root an. cond. $42.4262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 3·11-s + 13-s − 15-s + 19-s + 2·23-s + 25-s − 27-s + 9·29-s + 3·33-s − 10·37-s − 39-s − 41-s + 45-s + 4·47-s − 7·49-s + 4·53-s − 3·55-s − 57-s + 5·59-s + 7·61-s + 65-s + 4·67-s − 2·69-s + 5·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.904·11-s + 0.277·13-s − 0.258·15-s + 0.229·19-s + 0.417·23-s + 1/5·25-s − 0.192·27-s + 1.67·29-s + 0.522·33-s − 1.64·37-s − 0.160·39-s − 0.156·41-s + 0.149·45-s + 0.583·47-s − 49-s + 0.549·53-s − 0.404·55-s − 0.132·57-s + 0.650·59-s + 0.896·61-s + 0.124·65-s + 0.488·67-s − 0.240·69-s + 0.593·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225420\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1799.98\)
Root analytic conductor: \(42.4262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225420,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.296111219\)
\(L(\frac12)\) \(\approx\) \(2.296111219\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.76415109676262, −12.68819233385895, −11.96197106577406, −11.53951642777808, −11.15093403994540, −10.42090451868503, −10.25323307170836, −9.956086523613413, −9.136499057334038, −8.721319648964037, −8.313048752327702, −7.663111805950718, −7.219425164279975, −6.562419843637813, −6.394036523391040, −5.521159623731716, −5.346755639886506, −4.789872070048637, −4.299758351587660, −3.462832440412220, −3.086327381350779, −2.326880225768235, −1.851619372244018, −1.011493863530628, −0.5015894617656842, 0.5015894617656842, 1.011493863530628, 1.851619372244018, 2.326880225768235, 3.086327381350779, 3.462832440412220, 4.299758351587660, 4.789872070048637, 5.346755639886506, 5.521159623731716, 6.394036523391040, 6.562419843637813, 7.219425164279975, 7.663111805950718, 8.313048752327702, 8.721319648964037, 9.136499057334038, 9.956086523613413, 10.25323307170836, 10.42090451868503, 11.15093403994540, 11.53951642777808, 11.96197106577406, 12.68819233385895, 12.76415109676262

Graph of the $Z$-function along the critical line