Properties

Label 2-21840-1.1-c1-0-25
Degree $2$
Conductor $21840$
Sign $-1$
Analytic cond. $174.393$
Root an. cond. $13.2058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 6·11-s + 13-s + 15-s − 8·19-s + 21-s + 25-s − 27-s − 6·29-s − 2·31-s + 6·33-s + 35-s + 2·37-s − 39-s + 10·43-s − 45-s + 12·47-s + 49-s + 12·53-s + 6·55-s + 8·57-s + 2·61-s − 63-s − 65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.80·11-s + 0.277·13-s + 0.258·15-s − 1.83·19-s + 0.218·21-s + 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.359·31-s + 1.04·33-s + 0.169·35-s + 0.328·37-s − 0.160·39-s + 1.52·43-s − 0.149·45-s + 1.75·47-s + 1/7·49-s + 1.64·53-s + 0.809·55-s + 1.05·57-s + 0.256·61-s − 0.125·63-s − 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21840\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(174.393\)
Root analytic conductor: \(13.2058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.60992665352685, −15.51707602892423, −14.92956151324333, −14.21441911061028, −13.42692198151871, −12.94846918800503, −12.69849548188870, −12.09775014865995, −11.26426157770444, −10.88416523794091, −10.41844757743941, −9.995018650272638, −8.961146903272682, −8.700045244324011, −7.699643751377631, −7.551305275863495, −6.739411153367130, −5.983955290356832, −5.597028538895364, −4.874888279596417, −4.149797492417215, −3.639677976810332, −2.538377169449505, −2.168701456565035, −0.7616022636976250, 0, 0.7616022636976250, 2.168701456565035, 2.538377169449505, 3.639677976810332, 4.149797492417215, 4.874888279596417, 5.597028538895364, 5.983955290356832, 6.739411153367130, 7.551305275863495, 7.699643751377631, 8.700045244324011, 8.961146903272682, 9.995018650272638, 10.41844757743941, 10.88416523794091, 11.26426157770444, 12.09775014865995, 12.69849548188870, 12.94846918800503, 13.42692198151871, 14.21441911061028, 14.92956151324333, 15.51707602892423, 15.60992665352685

Graph of the $Z$-function along the critical line