Properties

Label 21840.a
Number of curves $4$
Conductor $21840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 21840.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21840.a do not have complex multiplication.

Modular form 21840.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} - 6 q^{11} + q^{13} + q^{15} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 21840.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21840.a1 21840bf3 \([0, -1, 0, -823576, 287950576]\) \(15082569606665230489/7751016000\) \(31748161536000\) \([2]\) \(248832\) \(1.9228\)  
21840.a2 21840bf4 \([0, -1, 0, -819096, 291233520]\) \(-14837772556740428569/342100087875000\) \(-1401241959936000000\) \([2]\) \(497664\) \(2.2694\)  
21840.a3 21840bf1 \([0, -1, 0, -12136, 235120]\) \(48264326765929/22299191460\) \(91337488220160\) \([2]\) \(82944\) \(1.3735\) \(\Gamma_0(N)\)-optimal
21840.a4 21840bf2 \([0, -1, 0, 42744, 1727856]\) \(2108526614950391/1540302022350\) \(-6309077083545600\) \([2]\) \(165888\) \(1.7200\)