Properties

Label 2-217800-1.1-c1-0-75
Degree $2$
Conductor $217800$
Sign $1$
Analytic cond. $1739.14$
Root an. cond. $41.7030$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 3·13-s + 17-s + 5·19-s + 4·23-s − 9·29-s + 6·31-s + 11·37-s − 2·41-s + 2·43-s − 6·47-s − 6·49-s + 4·53-s − 4·59-s − 4·61-s + 6·67-s − 5·71-s + 6·73-s + 14·79-s − 7·83-s − 4·89-s + 3·91-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s + 0.832·13-s + 0.242·17-s + 1.14·19-s + 0.834·23-s − 1.67·29-s + 1.07·31-s + 1.80·37-s − 0.312·41-s + 0.304·43-s − 0.875·47-s − 6/7·49-s + 0.549·53-s − 0.520·59-s − 0.512·61-s + 0.733·67-s − 0.593·71-s + 0.702·73-s + 1.57·79-s − 0.768·83-s − 0.423·89-s + 0.314·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 217800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 217800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(217800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1739.14\)
Root analytic conductor: \(41.7030\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 217800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.649584086\)
\(L(\frac12)\) \(\approx\) \(3.649584086\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09660049829047, −12.57468051079492, −11.96949229970847, −11.39628400842565, −11.27987865247413, −10.80248060157694, −10.07445455810902, −9.724388004822934, −9.215300867272572, −8.813521011490672, −8.156912293624482, −7.754790297392863, −7.426278661429182, −6.707127870546151, −6.251009823633022, −5.729677586917258, −5.240134797134808, −4.700310848733082, −4.206810694458896, −3.420733899125603, −3.212164219644999, −2.421955400642261, −1.742718340400973, −1.122969554724411, −0.5955693208807949, 0.5955693208807949, 1.122969554724411, 1.742718340400973, 2.421955400642261, 3.212164219644999, 3.420733899125603, 4.206810694458896, 4.700310848733082, 5.240134797134808, 5.729677586917258, 6.251009823633022, 6.707127870546151, 7.426278661429182, 7.754790297392863, 8.156912293624482, 8.813521011490672, 9.215300867272572, 9.724388004822934, 10.07445455810902, 10.80248060157694, 11.27987865247413, 11.39628400842565, 11.96949229970847, 12.57468051079492, 13.09660049829047

Graph of the $Z$-function along the critical line