Properties

Label 2-21675-1.1-c1-0-18
Degree $2$
Conductor $21675$
Sign $-1$
Analytic cond. $173.075$
Root an. cond. $13.1558$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s − 3·8-s + 9-s + 4·11-s + 12-s + 2·13-s − 16-s + 18-s + 4·19-s + 4·22-s + 3·24-s + 2·26-s − 27-s + 2·29-s + 5·32-s − 4·33-s − 36-s − 10·37-s + 4·38-s − 2·39-s − 10·41-s − 4·43-s − 4·44-s − 8·47-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.06·8-s + 1/3·9-s + 1.20·11-s + 0.288·12-s + 0.554·13-s − 1/4·16-s + 0.235·18-s + 0.917·19-s + 0.852·22-s + 0.612·24-s + 0.392·26-s − 0.192·27-s + 0.371·29-s + 0.883·32-s − 0.696·33-s − 1/6·36-s − 1.64·37-s + 0.648·38-s − 0.320·39-s − 1.56·41-s − 0.609·43-s − 0.603·44-s − 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21675\)    =    \(3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(173.075\)
Root analytic conductor: \(13.1558\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21675,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.79808733652950, −15.15916494515028, −14.72198242693331, −14.03431847450384, −13.70478976870578, −13.22250086926941, −12.50490113665343, −11.99474381433688, −11.69061024327973, −11.10801141090013, −10.24252832832036, −9.810857423433633, −9.168696354992937, −8.609806086799086, −8.104875420158932, −7.027064678144183, −6.666718117023006, −6.036755439123625, −5.362021528899911, −4.915930571037800, −4.222894055903174, −3.509425130450013, −3.180749275302384, −1.809693898840095, −1.081384441976826, 0, 1.081384441976826, 1.809693898840095, 3.180749275302384, 3.509425130450013, 4.222894055903174, 4.915930571037800, 5.362021528899911, 6.036755439123625, 6.666718117023006, 7.027064678144183, 8.104875420158932, 8.609806086799086, 9.168696354992937, 9.810857423433633, 10.24252832832036, 11.10801141090013, 11.69061024327973, 11.99474381433688, 12.50490113665343, 13.22250086926941, 13.70478976870578, 14.03431847450384, 14.72198242693331, 15.15916494515028, 15.79808733652950

Graph of the $Z$-function along the critical line