Properties

Label 2-216384-1.1-c1-0-215
Degree $2$
Conductor $216384$
Sign $-1$
Analytic cond. $1727.83$
Root an. cond. $41.5672$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 6·11-s + 2·13-s + 6·17-s − 2·19-s − 23-s − 5·25-s − 27-s + 6·29-s + 8·31-s − 6·33-s − 8·37-s − 2·39-s − 6·41-s + 2·43-s − 6·51-s + 12·53-s + 2·57-s + 8·61-s − 10·67-s + 69-s − 14·73-s + 5·75-s − 8·79-s + 81-s − 6·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.80·11-s + 0.554·13-s + 1.45·17-s − 0.458·19-s − 0.208·23-s − 25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s − 1.04·33-s − 1.31·37-s − 0.320·39-s − 0.937·41-s + 0.304·43-s − 0.840·51-s + 1.64·53-s + 0.264·57-s + 1.02·61-s − 1.22·67-s + 0.120·69-s − 1.63·73-s + 0.577·75-s − 0.900·79-s + 1/9·81-s − 0.658·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216384\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1727.83\)
Root analytic conductor: \(41.5672\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 216384,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26109959995514, −12.59983744890892, −12.01040587099704, −11.84028356386808, −11.68673455697390, −10.88843379335536, −10.32589561561572, −9.974187283454267, −9.696521819452137, −8.774976499948771, −8.650293680525611, −8.121199091215605, −7.310463141569925, −7.032732697923326, −6.374572350571588, −6.083675244344131, −5.613036045874690, −4.985255045376057, −4.310279486754562, −3.961262226538779, −3.447738873437196, −2.817886937321449, −1.942969225450907, −1.258658605245200, −1.026463233122999, 0, 1.026463233122999, 1.258658605245200, 1.942969225450907, 2.817886937321449, 3.447738873437196, 3.961262226538779, 4.310279486754562, 4.985255045376057, 5.613036045874690, 6.083675244344131, 6.374572350571588, 7.032732697923326, 7.310463141569925, 8.121199091215605, 8.650293680525611, 8.774976499948771, 9.696521819452137, 9.974187283454267, 10.32589561561572, 10.88843379335536, 11.68673455697390, 11.84028356386808, 12.01040587099704, 12.59983744890892, 13.26109959995514

Graph of the $Z$-function along the critical line