Properties

Label 2-21312-1.1-c1-0-13
Degree $2$
Conductor $21312$
Sign $-1$
Analytic cond. $170.177$
Root an. cond. $13.0451$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 3·7-s − 5·11-s − 3·13-s − 3·17-s − 7·19-s + 9·23-s + 11·25-s + 2·31-s + 12·35-s − 37-s − 6·41-s + 4·43-s − 10·47-s + 2·49-s + 3·53-s + 20·55-s + 4·59-s + 2·61-s + 12·65-s + 6·67-s − 12·71-s + 13·73-s + 15·77-s + 6·79-s − 5·83-s + 12·85-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.13·7-s − 1.50·11-s − 0.832·13-s − 0.727·17-s − 1.60·19-s + 1.87·23-s + 11/5·25-s + 0.359·31-s + 2.02·35-s − 0.164·37-s − 0.937·41-s + 0.609·43-s − 1.45·47-s + 2/7·49-s + 0.412·53-s + 2.69·55-s + 0.520·59-s + 0.256·61-s + 1.48·65-s + 0.733·67-s − 1.42·71-s + 1.52·73-s + 1.70·77-s + 0.675·79-s − 0.548·83-s + 1.30·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21312\)    =    \(2^{6} \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(170.177\)
Root analytic conductor: \(13.0451\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71005075469626, −15.34764916444077, −15.05233431693345, −14.45390894149339, −13.37592818457475, −12.96540567445059, −12.68899115352405, −12.16533927202433, −11.29579688361062, −11.06528593687300, −10.36437030485847, −9.914480881525380, −8.972025424038701, −8.553514663911738, −7.988152965673084, −7.352571715916406, −6.857272169997633, −6.415572561465275, −5.274530747401378, −4.773071341311620, −4.215269188156720, −3.357818236688999, −2.928270372014711, −2.210318530797892, −0.5826217374875523, 0, 0.5826217374875523, 2.210318530797892, 2.928270372014711, 3.357818236688999, 4.215269188156720, 4.773071341311620, 5.274530747401378, 6.415572561465275, 6.857272169997633, 7.352571715916406, 7.988152965673084, 8.553514663911738, 8.972025424038701, 9.914480881525380, 10.36437030485847, 11.06528593687300, 11.29579688361062, 12.16533927202433, 12.68899115352405, 12.96540567445059, 13.37592818457475, 14.45390894149339, 15.05233431693345, 15.34764916444077, 15.71005075469626

Graph of the $Z$-function along the critical line