Properties

Label 21312.a
Number of curves $1$
Conductor $21312$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 21312.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21312.a do not have complex multiplication.

Modular form 21312.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{5} - 3 q^{7} - 5 q^{11} - 3 q^{13} - 3 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 21312.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21312.a1 21312bx1 \([0, 0, 0, -105014892, 414216952400]\) \(-670206957616537490521/6109179936768\) \(-1167482466835856621568\) \([]\) \(3815424\) \(3.2070\) \(\Gamma_0(N)\)-optimal