Properties

Label 2-210210-1.1-c1-0-123
Degree $2$
Conductor $210210$
Sign $-1$
Analytic cond. $1678.53$
Root an. cond. $40.9699$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 11-s + 12-s + 13-s + 15-s + 16-s − 2·17-s + 18-s − 4·19-s + 20-s + 22-s + 24-s + 25-s + 26-s + 27-s + 2·29-s + 30-s − 8·31-s + 32-s + 33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.917·19-s + 0.223·20-s + 0.213·22-s + 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.371·29-s + 0.182·30-s − 1.43·31-s + 0.176·32-s + 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(210210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1678.53\)
Root analytic conductor: \(40.9699\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 210210,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
13 \( 1 - T \)
good17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23713177169034, −12.91371819942394, −12.45492582298562, −11.98805358814459, −11.37109004036325, −10.94233913119804, −10.45819105770835, −10.11276388681581, −9.310076144254955, −9.088541494228327, −8.551761364064792, −8.028949349908138, −7.488931595813726, −6.852479102989132, −6.578663602819665, −6.037013389556161, −5.407158937949124, −5.017330520673826, −4.272332629136279, −3.948822454217758, −3.372531575436240, −2.779643120695681, −2.128910734370703, −1.791582844742574, −1.034215437628039, 0, 1.034215437628039, 1.791582844742574, 2.128910734370703, 2.779643120695681, 3.372531575436240, 3.948822454217758, 4.272332629136279, 5.017330520673826, 5.407158937949124, 6.037013389556161, 6.578663602819665, 6.852479102989132, 7.488931595813726, 8.028949349908138, 8.551761364064792, 9.088541494228327, 9.310076144254955, 10.11276388681581, 10.45819105770835, 10.94233913119804, 11.37109004036325, 11.98805358814459, 12.45492582298562, 12.91371819942394, 13.23713177169034

Graph of the $Z$-function along the critical line