Properties

Label 2-209814-1.1-c1-0-27
Degree $2$
Conductor $209814$
Sign $1$
Analytic cond. $1675.37$
Root an. cond. $40.9313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 3·5-s + 6-s + 7-s − 8-s + 9-s − 3·10-s − 12-s − 4·13-s − 14-s − 3·15-s + 16-s − 18-s + 5·19-s + 3·20-s − 21-s + 24-s + 4·25-s + 4·26-s − 27-s + 28-s − 6·29-s + 3·30-s + 7·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.288·12-s − 1.10·13-s − 0.267·14-s − 0.774·15-s + 1/4·16-s − 0.235·18-s + 1.14·19-s + 0.670·20-s − 0.218·21-s + 0.204·24-s + 4/5·25-s + 0.784·26-s − 0.192·27-s + 0.188·28-s − 1.11·29-s + 0.547·30-s + 1.25·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209814 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209814 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209814\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1675.37\)
Root analytic conductor: \(40.9313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 209814,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.020373816\)
\(L(\frac12)\) \(\approx\) \(2.020373816\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
11 \( 1 \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03130577185515, −12.42295923743056, −11.97613536767964, −11.63690547277108, −11.00453478406844, −10.67219709335076, −10.00037327404840, −9.814913542474258, −9.332332729380173, −9.077678430667759, −8.032071891352328, −7.985704913466391, −7.213963898326828, −6.795590105817868, −6.365994036895527, −5.610337805277466, −5.448860049670401, −4.957623061588450, −4.260857210702836, −3.558065630649571, −2.612331338157299, −2.448082584184442, −1.680869888547026, −1.165192105999938, −0.4899895590341042, 0.4899895590341042, 1.165192105999938, 1.680869888547026, 2.448082584184442, 2.612331338157299, 3.558065630649571, 4.260857210702836, 4.957623061588450, 5.448860049670401, 5.610337805277466, 6.365994036895527, 6.795590105817868, 7.213963898326828, 7.985704913466391, 8.032071891352328, 9.077678430667759, 9.332332729380173, 9.814913542474258, 10.00037327404840, 10.67219709335076, 11.00453478406844, 11.63690547277108, 11.97613536767964, 12.42295923743056, 13.03130577185515

Graph of the $Z$-function along the critical line