Properties

Label 2-209344-1.1-c1-0-0
Degree $2$
Conductor $209344$
Sign $1$
Analytic cond. $1671.62$
Root an. cond. $40.8854$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 2·7-s − 3·9-s − 2·13-s − 2·17-s + 4·19-s + 9·23-s + 4·25-s − 29-s + 4·31-s + 6·35-s + 8·37-s + 2·41-s − 43-s − 9·45-s + 10·47-s − 3·49-s + 9·53-s − 2·61-s − 6·63-s − 6·65-s + 14·67-s − 6·71-s − 4·73-s + 12·79-s + 9·81-s + 4·83-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.755·7-s − 9-s − 0.554·13-s − 0.485·17-s + 0.917·19-s + 1.87·23-s + 4/5·25-s − 0.185·29-s + 0.718·31-s + 1.01·35-s + 1.31·37-s + 0.312·41-s − 0.152·43-s − 1.34·45-s + 1.45·47-s − 3/7·49-s + 1.23·53-s − 0.256·61-s − 0.755·63-s − 0.744·65-s + 1.71·67-s − 0.712·71-s − 0.468·73-s + 1.35·79-s + 81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209344\)    =    \(2^{6} \cdot 3271\)
Sign: $1$
Analytic conductor: \(1671.62\)
Root analytic conductor: \(40.8854\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 209344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.701234533\)
\(L(\frac12)\) \(\approx\) \(4.701234533\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3271 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15586647030652, −12.65546356347429, −11.94210634954794, −11.64545570404621, −11.05043073382624, −10.82068218141900, −10.15086747515617, −9.710768956318922, −9.133667349120100, −8.980258108794891, −8.372696932318635, −7.714432802858751, −7.384032664102247, −6.630625701836211, −6.298050873607983, −5.618771290739568, −5.277718540165574, −4.932289593111704, −4.307602962630653, −3.503614949757852, −2.721113869562010, −2.556243347281389, −1.919083008649780, −1.113434998969616, −0.6659506252444294, 0.6659506252444294, 1.113434998969616, 1.919083008649780, 2.556243347281389, 2.721113869562010, 3.503614949757852, 4.307602962630653, 4.932289593111704, 5.277718540165574, 5.618771290739568, 6.298050873607983, 6.630625701836211, 7.384032664102247, 7.714432802858751, 8.372696932318635, 8.980258108794891, 9.133667349120100, 9.710768956318922, 10.15086747515617, 10.82068218141900, 11.05043073382624, 11.64545570404621, 11.94210634954794, 12.65546356347429, 13.15586647030652

Graph of the $Z$-function along the critical line