Properties

Label 2-207368-1.1-c1-0-15
Degree $2$
Conductor $207368$
Sign $-1$
Analytic cond. $1655.84$
Root an. cond. $40.6920$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s + 4·11-s + 4·15-s + 6·17-s − 8·19-s − 25-s + 4·27-s − 2·29-s − 6·31-s − 8·33-s + 2·37-s − 8·43-s − 2·45-s − 2·47-s − 12·51-s + 6·53-s − 8·55-s + 16·57-s − 6·59-s + 10·61-s − 12·67-s + 16·71-s − 4·73-s + 2·75-s + 4·79-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.20·11-s + 1.03·15-s + 1.45·17-s − 1.83·19-s − 1/5·25-s + 0.769·27-s − 0.371·29-s − 1.07·31-s − 1.39·33-s + 0.328·37-s − 1.21·43-s − 0.298·45-s − 0.291·47-s − 1.68·51-s + 0.824·53-s − 1.07·55-s + 2.11·57-s − 0.781·59-s + 1.28·61-s − 1.46·67-s + 1.89·71-s − 0.468·73-s + 0.230·75-s + 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207368\)    =    \(2^{3} \cdot 7^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1655.84\)
Root analytic conductor: \(40.6920\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 207368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07478845298268, −12.60173025796451, −12.10278751720725, −11.96904421333817, −11.35290084890915, −11.14886680853897, −10.50145960995586, −10.20259106330894, −9.497675447443666, −9.040400282718449, −8.461944373391422, −8.014696064773816, −7.548577615564859, −6.818045107106211, −6.591591585587927, −6.032434204987664, −5.521379270645257, −5.072312947835617, −4.392098561603824, −3.895100997723970, −3.610880130688449, −2.835065207237583, −1.944583038519747, −1.368724841965489, −0.6104198646755134, 0, 0.6104198646755134, 1.368724841965489, 1.944583038519747, 2.835065207237583, 3.610880130688449, 3.895100997723970, 4.392098561603824, 5.072312947835617, 5.521379270645257, 6.032434204987664, 6.591591585587927, 6.818045107106211, 7.548577615564859, 8.014696064773816, 8.461944373391422, 9.040400282718449, 9.497675447443666, 10.20259106330894, 10.50145960995586, 11.14886680853897, 11.35290084890915, 11.96904421333817, 12.10278751720725, 12.60173025796451, 13.07478845298268

Graph of the $Z$-function along the critical line